DOC: Updated header documentation

This commit is contained in:
Andrew Heather 2018-12-06 23:09:10 +00:00
parent a16fd1fa9e
commit 0b5f681fb9
4 changed files with 20 additions and 21 deletions

View File

@ -28,14 +28,14 @@ Description
Mass tranfer Lee model. Simple model driven by field value difference as:
\f[
mDot = C \rho \alpha (\T - T_{activate})/T_{activate}
\dot{m} = C \rho \alpha (T - T_{activate})/T_{activate}
\f]
where C is a model constant.
if C > 0:
\f[
mDot = C \rho \alpha*(\T - T_{activate})/T_{activate}
\dot{m} = C \rho \alpha (T - T_{activate})/T_{activate}
\f]
for \f[ T > T_{activate} \f]
@ -46,12 +46,12 @@ Description
if C < 0:
\f[
mDot = -C \rho \alpha (T_{activate} - \T)/T_{activate}
\dot{m} = -C \rho \alpha (T_{activate} - T)/T_{activate}
\f]
for \f[ T < T_{activate} \f]
and
\f[ mDot = 0.0 \f] for \f[ T > T_{activate} \f]
\f[ \dot{m} = 0.0 \f] for \f[ T > T_{activate} \f]
Based on the reference:
-# W. H. Lee. "A Pressure Iteration Scheme for Two-Phase Modeling".

View File

@ -25,38 +25,37 @@ Class
Foam::meltingEvaporationModels::kineticGasEvaporation
Description
Considering the Hertz Knudsen formula, which gives the
evaporation-condensation flux based on the kinetic theory for flat
interface:
\f[
Flux = C sqrt(M/(2 \pi \R T_{activate}))(\p - pSat)
Flux = C \sqrt{\frac{M}{2 \pi R T_{activate}}}(p - p_{sat})
\f]
where:
\vartable
Flux | mass flux rate [Kg/s/m2]
Flux | mass flux rate [kg/s/m2]
M | molecular weight
T_{activate} | saturation temperature
C | accomodation coefficient
R | universal gas constant
pSat | saturation pressure
\p | vapor partial pressure
p_{sat} | saturation pressure
p | vapor partial pressure
\endvartable
The Clapeyron-Clausius equation relates the pressure to the temperature
for the saturation condition:
\f[
dp/dT = - L / (T*(nuv - nul))
\frac{dp}{dT} = - \frac{L}{T (\nu_v - \nu_l)}
\f]
where:
\vartable
L | latent heat
nuv | inverse of the vapor density
nul | inverse of the liquid density
\nu_v | inverse of the vapor density
\nu_l | inverse of the liquid density
\endvartable
@ -64,10 +63,10 @@ Description
\f[
Flux =
2 C/(2 - C)
sqrt(M/(2 \pi \R T_{activate}))
2 \frac{C}{2 - C}
\sqrt{\frac{M}{2 \pi R T_{activate}}}
L (\rho_{v}*\rho_{l}/(\rho_{l} - \rho_{v}))
(\T - T_{activate})/T_{activate}
(T - T_{activate})/T_{activate}
\f]
This assumes liquid and vapour are in equilibrium, then the accomodation
@ -75,7 +74,7 @@ Description
Hertz-Knudsen-Schrage.
Based on the reference:
- Van P. Carey, Liquid-Vapor Phase Change Phenomena, ISBN 0-89116836,
- Van P. Carey, Liquid-Vapor Phase Change Phenomena, ISBN 0-89116836,
1992, pp. 112-121.

View File

@ -28,6 +28,7 @@ Description
A topoSetCellSource to select cells belonging to a topological connected
region (that contains given points)
Usage
In dictionary input:
\verbatim
// optional name of cellSet delimiting search
@ -41,7 +42,7 @@ Description
insidePoints ((1 2 3));
\endverbatim
\heading Dictionary parameters
Dictionary parameters:
\table
Property | Description | Required | Default
insidePoints | Points inside regions | yes |
@ -68,7 +69,7 @@ namespace Foam
class regionSplit;
/*---------------------------------------------------------------------------*\
Class regionToCell Declaration
Class regionToCell Declaration
\*---------------------------------------------------------------------------*/
class regionToCell
@ -151,7 +152,6 @@ public:
const topoSetSource::setAction action,
topoSet& set
) const;
};

View File

@ -70,14 +70,14 @@ Description
The \c rootdir normally corresponds to something like
\c postProcessing/\<name\>
\subheading Geometry
where the geometry is written as:
\verbatim
rootdir
`-- surfaceName
`-- "points"
\endverbatim
\subheading Fields
and field data:
\verbatim
rootdir
`-- surfaceName