Restructured.

This commit is contained in:
henry 2009-07-27 10:36:46 +01:00
parent a034711c39
commit 3e1f753522

View File

@ -73,19 +73,6 @@
+ Export *new* environment variable =FOAM_CASENAME= that contains the
name part of the =FOAM_CASE= environment variable.
*** Numerics
+ *new* polynomial-fit higher-order interpolation schemes:
- =biLinearFit=
- =linearFit=
- =quadraticLinearFit=
- =quadraticFit=
- =linearPureUpwindFit=
- =quadraticLinearPureUpwindFit=
- =quadraticLinearUpwindFit=
- =quadraticUpwindFit=
- =cubicUpwindFit=
+ *new* polynomial-fit higher-order Sn-Grad: =quadraticFitSnGrad=.
*** Turbulence modelling
+ Major development of turbulence model libraries to give extra flexibility
at the solver level. For solvers that can support either RAS/LES
@ -188,6 +175,19 @@
+ Significant development of the libraries offering molecular dynamics
simulation functionality - see =mdFoam= and =mdEquilibrationFoam= below.
*** Numerics
+ *new* polynomial-fit higher-order interpolation schemes:
- =biLinearFit=
- =linearFit=
- =quadraticLinearFit=
- =quadraticFit=
- =linearPureUpwindFit=
- =quadraticLinearPureUpwindFit=
- =quadraticLinearUpwindFit=
- =quadraticUpwindFit=
- =cubicUpwindFit=
+ *new* polynomial-fit higher-order Sn-Grad: =quadraticFitSnGrad=.
*** *New* surfMesh library
Provides a more efficient storage mechanism than possible with =triSurface=
without restrictions on the shape of the face (templated parameter).
@ -196,112 +196,75 @@
=triSurface=).
+ =surfMesh= class - for reading/writing in native OpenFOAM format.
* Solver restructuring
The upgrade to the turbulence models means that the simulation type, i.e.
laminar, RAS or LES can be selected at run time. This has allowed a reduction
in the number of solvers, simplifying the overall code structure
+ Solvers which support laminar, RAS and LES:
- =turbFoam=, =oodles= \rightarrow =pisoFoam=.
- =turbDyMFoam= \rightarrow =pimpleDyMFoam=.
- =rhoTurbFoam=, =coodles= \rightarrow =rhoPisoFoam=.
- =xoodles= \rightarrow absorbed into =XiFoam=.
- =buoyantFoam=, =lesBuoyantFoam= \rightarrow =buoyantPisoFoam=.
- =interFoam=, =rasInterFoam=, =lesInterFoam= \rightarrow =interFoam=.
- =lesCavitatingFoam=, =rasCavitatingFoam= \rightarrow =cavitatingFoam=.
+ Solvers which support LES only:
- =channelOodles= \rightarrow =channelFoam= (LES).
* Solvers
*** Solver restructuring
The upgrade to the turbulence models means that the simulation type, i.e.
laminar, RAS or LES can be selected at run time. This has allowed a reduction
in the number of solvers, simplifying the overall code structure
+ Solvers which support laminar, RAS and LES:
- =turbFoam=, =oodles= \rightarrow =pisoFoam=.
- =turbDyMFoam= \rightarrow =pimpleDyMFoam=.
- =rhoTurbFoam=, =coodles= \rightarrow =rhoPisoFoam=.
- =xoodles= \rightarrow absorbed into =XiFoam=.
- =buoyantFoam=, =lesBuoyantFoam= \rightarrow =buoyantPisoFoam=.
- =interFoam=, =rasInterFoam=, =lesInterFoam= \rightarrow =interFoam=.
- =lesCavitatingFoam=, =rasCavitatingFoam= \rightarrow =cavitatingFoam=.
+ Solvers which support LES only:
- =channelOodles= \rightarrow =channelFoam= (LES).
+ =pd= replaced by static pressure =p=. All solvers in which buoyancy affects
might be strong have been converted from using =pd= to =p= with improved
numerics to give equally good accuracy and stability. This change is
prompted by the need to remove the confusion surrounding the meaning and
purpose of =pd=.
+ =g= (acceleration due to gravity) is now a *new*
=uniformDimensionedVectorField= which has the behaviour of a field, is
registered to an =objectRegistry=, but stores only a single value. Thus
=g= and other =UniformDimensionedFields= can be created and looked-up
elsewhere in the code, /e.g./ in =fvPatchFields=.
* General changes
+ =pd= replaced by static pressure =p=. All solvers in which buoyancy affects
might be strong have been converted from using =pd= to =p= with improved
numerics to give equally good accuracy and stability. This change is
prompted by the need to remove the confusion surrounding the meaning and
purpose of =pd=.
*** Solver control improvements
Now uses consistent dictionary entries for the solver controls.
+ This Allows dictionary substitutions and regular expressions in
/system/fvSolution/.
+ The old solver control syntax is still supported (warning emitted), but
the *new* =foamUpgradeFvSolution= utility can be used to convert
/system/fvSolution/ to the new format.
+ =g= (acceleration due to gravity) is now a *new*
=uniformDimensionedVectorField= which has the behaviour of a field, is
registered to an =objectRegistry=, but stores only a single value. Thus
=g= and other =UniformDimensionedFields= can be created and looked-up
elsewhere in the code, /e.g./ in =fvPatchFields=.
*** *New* Solvers
+ =buoyantBoussinesqSimpleFoam= Steady state heat transfer solver using a
Boussinesq approximation for buoyancy, with laminar, RAS or LES turbulence
modelling.
+ =buoyantBoussinesqPisoFoam= Transient heat transfer solver using a
Boussinesq approximation for buoyancy, with laminar, RAS or LES turbulence
modelling.
+ =coalChemistryFoam= Transient, reacting lagrangian solver, employing a coal
cloud and a thermo cloud, with chemistry, and laminar, RAS or LES turbulence
modelling.
+ =porousExplicitSourceReactingParcelFoam= Transient, reacting lagrangian
solver, employing a single phase reacting cloud, with porous media, explicit
mass sources, and laminar, RAS or LES turbulence modelling.
+ =rhoReactingFoam= Density-based thermodynamics variant of the reactingFoam
solver, i.e. now applicable to liquid systems.
+ =dsmcFoam= DSMC (Direct Simulation Monte-Carlo) solver for rarefied gas
dynamics simulations, able to simulate mixtures of an arbitrary number of
gas species. The variable hard sphere collision model with Larsen-Borgnakke
internal energy redistribution (see "Molecular Gas Dynamics and the Direct
Simulation of Gas Flows" G.A. Bird, 1994) is available; other run-time
selectable collision models can be easily added.
** Solver control improvements
Use dictionary entries instead of an =Istream= for the solver controls.
+ This Allows dictionary substitutions and regular expressions in
/system/fvSolution/.
+ The old solver control syntax is still supported (warning emitted), but
the *new* =foamUpgradeFvSolution= utility can be used to convert
/system/fvSolution/ to the new format.
* Tutorial restructuring
to reflect solver application structure.
* *New* Solvers
+ =buoyantBoussinesqSimpleFoam= Steady state heat transfer solver using a
Boussinesq approximation for buoyancy, with laminar, RAS or LES turbulence
modelling.
+ =buoyantBoussinesqPisoFoam= Transient heat transfer solver using a
Boussinesq approximation for buoyancy, with laminar, RAS or LES turbulence
modelling.
+ =coalChemistryFoam= Transient, reacting lagrangian solver, employing a coal
cloud and a thermo cloud, with chemistry, and laminar, RAS or LES turbulence
modelling.
+ =porousExplicitSourceReactingParcelFoam= Transient, reacting lagrangian
solver, employing a single phase reacting cloud, with porous media, explicit
mass sources, and laminar, RAS or LES turbulence modelling.
+ =rhoReactingFoam= Density-based thermodynamics variant of the reactingFoam
solver, i.e. now applicable to liquid systems.
+ =dsmcFoam= DSMC (Direct Simulation Monte-Carlo) solver for rarefied gas
dynamics simulations, able to simulate mixtures of an arbitrary number of
gas species. The variable hard sphere collision model with Larsen-Borgnakke
internal energy redistribution (see "Molecular Gas Dynamics and the Direct
Simulation of Gas Flows" G.A. Bird, 1994) is available; other run-time
selectable collision models can be easily added.
* Updated solvers
+ =mdFoam= Molecular Dynamics (MD) solver able to simulate a mixture of an
arbitrary number of mono-atomic and small, rigid polyatomic (i.e. H2O, N2)
molecular species, with 6 degree of freedom motion, in complex geometries. A
molecule of any species can be built by specifying its sites of mass and
charge. All molecules interact with short-range dispersion forces and
pairwise electrostatic interactions using methods described in: Fennell and
Gezelter, J. Chem. Phys. 124, 234104 (2006).
+ =mdEquilibrationFoam= Similar to mdFoam, but employs velocity scaling to
adjust the simulation temperature to a target value. Useful to equilibrate a
case before simulation.
+ =chtMultiRegionFoam= New boundary condition allows independent decomposition
of coupled regions without any constraint on the decomposition.
* Post-processing
+ Sampling on iso-surfaces, interpolated or non-interpolated.
+ Sampling on surface defined by distance to surface (=distanceSurface=).
+ Cutting planes for arbitrary meshes.
+ Output to any surface geometry format supported by the =surfMesh= library.
*** Function objects
***** Improvements for function objects and time-looping
+ The =functionObjectList= retains the order of the =functionObject=
order, which allows a chaining of operations. It is thus internally more
efficient when /system/controlDict/ uses =functions {..}= instead of
=functions (..)=, but both forms are supported.
+ The =functionObject= now has an additional =end()= method that is called
when =Time::loop()= or =Time::run()= determine that the time-loop exits.
Accordingly, one of these two idioms should be used in solver code:
1. =while (runTime.loop() { ... }=,
2. =while (runTime.run()) { runTime++; ... }=.
+ *New* =functionObjectList= now tracks the SHA1 message digest of the
sub-directories. This avoids reloading a =functionObject= when
something unrelated in /system/controlDict/ changed.
***** *New* function objects:
+ =systemCall= - executes a list of system instructions.
+ =fieldMinMax= - computes the min/max of a <field>.
+ =staticPressure= - converts kinematic pressure to static pressure.
+ =dsmcFields= - calculates intensive fields (velocity and temperature)
from averaged extensive fields (i.e. momentum and energy).
***** Usage
+ Improved output control: =timeStep= or =outputTime=.
*** Updated solvers
+ =mdFoam= Molecular Dynamics (MD) solver able to simulate a mixture of an
arbitrary number of mono-atomic and small, rigid polyatomic (i.e. H2O, N2)
molecular species, with 6 degree of freedom motion, in complex geometries. A
molecule of any species can be built by specifying its sites of mass and
charge. All molecules interact with short-range dispersion forces and
pairwise electrostatic interactions using methods described in: Fennell and
Gezelter, J. Chem. Phys. 124, 234104 (2006).
+ =mdEquilibrationFoam= Similar to mdFoam, but employs velocity scaling to
adjust the simulation temperature to a target value. Useful to equilibrate a
case before simulation.
+ =chtMultiRegionFoam= New boundary condition allows independent decomposition
of coupled regions without any constraint on the decomposition.
* Boundary conditions
+ Improved set of direct mapped boundary conditions.
@ -356,6 +319,41 @@
Only creates (and removes) /.OpenFOAM/ files if they didn't already
exist, which is useful in connection with the =-touch= option.
* Post-processing
+ Sampling on iso-surfaces, interpolated or non-interpolated.
+ Sampling on surface defined by distance to surface (=distanceSurface=).
+ Cutting planes for arbitrary meshes.
+ Output to any surface geometry format supported by the =surfMesh= library.
*** Function objects
***** Improvements for function objects and time-looping
+ The =functionObjectList= retains the order of the =functionObject=
order, which allows a chaining of operations. It is thus internally more
efficient when /system/controlDict/ uses =functions {..}= instead of
=functions (..)=, but both forms are supported.
+ The =functionObject= now has an additional =end()= method that is called
when =Time::loop()= or =Time::run()= determine that the time-loop exits.
Accordingly, one of these two idioms should be used in solver code:
1. =while (runTime.loop() { ... }=,
2. =while (runTime.run()) { runTime++; ... }=.
+ *New* =functionObjectList= now tracks the SHA1 message digest of the
sub-directories. This avoids reloading a =functionObject= when
something unrelated in /system/controlDict/ changed.
***** *New* function objects:
+ =systemCall= - executes a list of system instructions.
+ =fieldMinMax= - computes the min/max of a <field>.
+ =staticPressure= - converts kinematic pressure to static pressure.
+ =dsmcFields= - calculates intensive fields (velocity and temperature)
from averaged extensive fields (i.e. momentum and energy).
***** Usage
+ Improved output control: =timeStep= or =outputTime=.
* Tutorial restructuring
to reflect solver application structure.
* Third-party Software
+ =gcc= upgraded to version 4.3.3.
+ =OpenMPI= upgraded to version 1.3.3.