STY: General clean up

This commit is contained in:
sergio 2020-02-19 10:40:56 -08:00
parent 83c06f1ace
commit 514751dcf7
31 changed files with 192 additions and 836 deletions

View File

@ -1,7 +1,7 @@
{
radiation->correct();
rhoCp = rho*fluid.Cp();
const surfaceScalarField rhoCpPhi(fvc::interpolate(fluid.Cp())*rhoPhi);
const volScalarField kappaEff
@ -31,7 +31,7 @@
fvOptions.correct(T);
fluid.correct();
Info<< "min/max(T) = "
<< min(T).value() << ", " << max(T).value() << endl;
}

View File

@ -59,14 +59,14 @@ Foam::meltingEvaporationModels::Lee<Thermo, OtherThermo>::Kexp
(
min(max(this->pair().from(), scalar(0)), scalar(1))
);
const volScalarField coeff
(
C_*from*this->pair().from().rho()*pos(from - alphaMin_)
*(refValue - Tactivate_)
/Tactivate_
);
if (sign(C_.value()) > 0)
{
return
@ -99,7 +99,7 @@ Foam::meltingEvaporationModels::Lee<Thermo, OtherThermo>::KSp
(
min(max(this->pair().from(), scalar(0)), scalar(1))
);
const volScalarField coeff
(
C_*from*this->pair().from().rho()*pos(from - alphaMin_)
@ -142,7 +142,7 @@ Foam::meltingEvaporationModels::Lee<Thermo, OtherThermo>::KSu
(
min(max(this->pair().from(), scalar(0)), scalar(1))
);
const volScalarField coeff
(
C_*from*this->pair().from().rho()*pos(from - alphaMin_)
@ -179,7 +179,7 @@ Foam::meltingEvaporationModels::Lee<Thermo, OtherThermo>::Tactivate() const
template<class Thermo, class OtherThermo>
bool
bool
Foam::meltingEvaporationModels::Lee<Thermo, OtherThermo>::includeDivU()
{
return true;

View File

@ -148,14 +148,14 @@ public:
(
const volScalarField& field
);
//- Implicit mass transfer coefficient
virtual tmp<volScalarField> KSp
(
label modelVariable,
const volScalarField& field
);
//- Explicit mass transfer coefficient
virtual tmp<volScalarField> KSu
(
@ -165,9 +165,9 @@ public:
//- Return T transition between phases
virtual const dimensionedScalar& Tactivate() const;
//- Adds and substract alpha*div(U) as a source term
// for alpha, substituting div(U) = mDot(1/rho1 - 1/rho2)
// for alpha, substituting div(U) = mDot(1/rho1 - 1/rho2)
virtual bool includeDivU();
};

View File

@ -176,25 +176,24 @@ public:
(
const volScalarField& field
) = 0;
//- Implicit mass transfer
virtual tmp<volScalarField> KSp
(
label modelVariable,
const volScalarField& field
) = 0;
//- Explicit mass transfer
virtual tmp<volScalarField> KSu
(
label modelVariable,
const volScalarField& field
) = 0;
//- Reference value
virtual const dimensionedScalar& Tactivate() const = 0;
//- Adds and substract alpha*div(U) as a source term
// for alpha, substituting div(U) = mDot(1/rho1 - 1/rho2)
virtual bool includeDivU();

View File

@ -187,14 +187,14 @@ public:
(
const volScalarField& field
);
//- Implicit mass transfer coefficient
virtual tmp<volScalarField> KSp
(
label modelVariable,
const volScalarField& field
);
//- Explicit mass transfer coefficient
virtual tmp<volScalarField> KSu
(

View File

@ -35,7 +35,7 @@
- fvm::laplacian(rAUf, p_rgh)
+ fluid.volTransfer(p_rgh)
);
p_rghEqn.setReference(pRefCell, pRefValue);
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));

View File

@ -219,7 +219,7 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::heatTransfer
)
);
volScalarField& dmdtNetki = tdmdtNetki.ref();
tmp<volScalarField> tSp
(
new volScalarField
@ -235,7 +235,7 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::heatTransfer
)
);
volScalarField& Sp = tSp.ref();
tmp<volScalarField> tSu
(
new volScalarField
@ -259,23 +259,23 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::heatTransfer
massTransferModels_[keyik];
dmdtNetki -= *dmdt_[keyik];
tmp<volScalarField> KSp =
interfacePtr->KSp(interfaceCompositionModel::T, T);
if (KSp.valid())
{
Sp -= KSp.ref();
}
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::T, T);
if (KSu.valid())
{
Su -= KSu.ref();
}
// If linearization is not provided used full explicit
if (!KSp.valid() && !KSu.valid())
{
@ -291,23 +291,23 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::heatTransfer
dmdtNetki += *dmdt_[keyki];
tmp<volScalarField> KSp =
interfacePtr->KSp(interfaceCompositionModel::T, T);
if (KSp.valid())
{
Sp += KSp.ref();
}
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::T, T);
if (KSu.valid())
{
Su += KSu.ref();
}
// If linearization is not provided used full explicit
if (!KSp.valid() && !KSu.valid())
{
@ -337,9 +337,9 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::volTransfer
(
new fvScalarMatrix(p, dimVolume/dimTime)
);
fvScalarMatrix& eqn = tEqnPtr.ref();
tmp<volScalarField> tSp
(
new volScalarField
@ -355,7 +355,7 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::volTransfer
)
);
volScalarField& Sp = tSp.ref();
tmp<volScalarField> tSu
(
new volScalarField
@ -371,7 +371,7 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::volTransfer
)
);
volScalarField& Su = tSu.ref();
forAllConstIters(this->totalPhasePairs(), iter)
{
const phasePair& pair = iter()();
@ -385,72 +385,72 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::volTransfer
phase2.name(),
true
);
if (massTransferModels_.found(key12))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
massTransferModels_[key12];
tmp<volScalarField> KSp =
interfacePtr->KSp(interfaceCompositionModel::P, p);
if (KSp.valid())
{
Sp += KSp.ref();
}
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::P, p);
if (KSu.valid())
{
Su += KSu.ref();
}
// If linearization is not provided used full explicit
if (!KSp.valid() && !KSu.valid())
{
Su -=
*dmdt_[key12]
Su -=
*dmdt_[key12]
*(
- this->coeffs(phase1.name())
+ this->coeffs(phase2.name())
);
}
}
const phasePairKey key21
(
phase2.name(),
phase1.name(),
true
);
if (massTransferModels_.found(key21))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
massTransferModels_[key21];
tmp<volScalarField> KSp =
interfacePtr->KSp(interfaceCompositionModel::P, p);
if (KSp.valid())
{
Sp += KSp.ref();
}
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::P, p);
if (KSu.valid())
{
Su += KSu.ref();
}
// If linearization is not provided used full explicit
if (!KSp.valid() && !KSu.valid())
{
Su +=
Su +=
*dmdt_[key21]
*(
- this->coeffs(phase1.name())
@ -460,7 +460,7 @@ Foam::MassTransferPhaseSystem<BasePhaseSystem>::volTransfer
}
}
eqn += fvm::Sp(Sp, p) + Su;
return tEqnPtr;
}
@ -489,18 +489,18 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::correctMassSources
// Phase k to phase i
const phasePairKey keyki(phasek.name(), phasei.name(), true);
if (massTransferModels_.found(keyik))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
massTransferModels_[keyik];
tmp<volScalarField> Kexp = interfacePtr->Kexp(T);
*dmdt_[keyik] = Kexp.ref();
}
if (massTransferModels_.found(keyki))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
@ -508,7 +508,7 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::correctMassSources
// Explicit temperature mass transfer rate
const tmp<volScalarField> Kexp = interfacePtr->Kexp(T);
*dmdt_[keyki] = Kexp.ref();
}
}
@ -527,7 +527,7 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::alphaTransfer
// This term adds and substract alpha*div(U) as a source term
// for alpha, substituting div(U) = mDot(1/rho1 - 1/rho2)
bool includeDivU(true);
forAllConstIters(this->totalPhasePairs(), iter)
{
const phasePair& pair = iter()();
@ -551,26 +551,26 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::alphaTransfer
phase2.name(),
true
);
tmp<volScalarField> tdmdt12(this->dmdt(key12));
volScalarField& dmdt12 = tdmdt12.ref();
if (massTransferModels_.found(key12))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
massTransferModels_[key12];
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::alpha, phase1);
if (KSu.valid())
{
dmdt12 = KSu.ref();
}
includeDivU = interfacePtr->includeDivU();
}
// Phase 2 to phase 1
const phasePairKey key21
@ -582,20 +582,20 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::alphaTransfer
tmp<volScalarField> tdmdt21(this->dmdt(key21));
volScalarField& dmdt21 = tdmdt21.ref();
if (massTransferModels_.found(key21))
{
autoPtr<interfaceCompositionModel>& interfacePtr =
massTransferModels_[key21];
tmp<volScalarField> KSu =
interfacePtr->KSu(interfaceCompositionModel::alpha, phase2);
if (KSu.valid())
{
dmdt21 = KSu.ref();
}
includeDivU = interfacePtr->includeDivU();
}
@ -612,16 +612,16 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::alphaTransfer
const volScalarField coeffs12(coeffs1 - coeffs2);
const surfaceScalarField& phi = this->phi();
if (includeDivU)
{
SuPhase1 +=
fvc::div(phi)*min(max(alpha1, scalar(0)), scalar(1));
SuPhase2 +=
fvc::div(phi)*min(max(alpha2, scalar(0)), scalar(1));
}
// NOTE: dmdtNet is distributed in terms =
// Source for phase 1 =
// dmdtNet/rho1
@ -715,12 +715,12 @@ void Foam::MassTransferPhaseSystem<BasePhaseSystem>::alphaTransfer
}
// Update ddtAlphaMax
this->ddtAlphaMax_ =
this->ddtAlphaMax_ =
max(gMax((dmdt21*coeffs1)()), gMax((dmdt12*coeffs2)()));
}
}
template<class BasePhaseSystem>
void Foam::MassTransferPhaseSystem<BasePhaseSystem>::massSpeciesTransfer
(

View File

@ -67,8 +67,8 @@ public:
phasePairKey::hash
>
massTransferModelTable;
typedef HashTable<volScalarField::Internal> SuSpTable;
protected:
@ -128,13 +128,13 @@ public:
//- Return the heat transfer matrix
virtual tmp<fvScalarMatrix> heatTransfer(const volScalarField& T);
//- Return the volumetric rate transfer matrix
virtual tmp<fvScalarMatrix> volTransfer(const volScalarField& p);
//- Correct/calculates mass sources dmdt for phases
virtual void correctMassSources(const volScalarField& T);
//- Calculate mass transfer for alpha's
virtual void alphaTransfer(SuSpTable& Su, SuSpTable& Sp);

View File

@ -120,7 +120,7 @@ Foam::multiphaseSystem::multiphaseSystem
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::multiphaseSystem::calculateSuSp()
{
{
this->alphaTransfer(Su_, Sp_);
}
@ -129,9 +129,9 @@ void Foam::multiphaseSystem::solve()
{
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
volScalarField& alpha = phases_.first();
if (nAlphaSubCycles > 1)
{
surfaceScalarField rhoPhiSum
@ -164,16 +164,16 @@ void Foam::multiphaseSystem::solve()
{
solveAlphas();
}
}
void Foam::multiphaseSystem::solveAlphas()
{
mesh_.solverDict("alpha").readEntry("cAlphas", cAlphas_);
const dictionary& alphaControls = mesh_.solverDict("alpha");
alphaControls.readEntry("cAlphas", cAlphas_);
label nAlphaCorr(alphaControls.get<label>("nAlphaCorr"));
PtrList<surfaceScalarField> phiAlphaCorrs(phases_.size());
const surfaceScalarField& phi = this->phi();
@ -361,7 +361,7 @@ void Foam::multiphaseSystem::solveAlphas()
alpha1Eqn.solve();
phiAlpha += alpha1Eqn.flux();
MULES::explicitSolve
(
geometricOneField(),
@ -375,7 +375,7 @@ void Foam::multiphaseSystem::solveAlphas()
);
phase.alphaPhi() = phiAlpha;
++phasei;
}

View File

@ -89,7 +89,7 @@ protected:
//- Calculate Sp and Su
void calculateSuSp();
//- Solve alphas
void solveAlphas();

View File

@ -1,642 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseSystem.H"
#include "fixedValueFvsPatchFields.H"
#include "Time.H"
#include "subCycle.H"
#include "fvcMeshPhi.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "fvcDiv.H"
#include "fvcDdt.H"
#include "fvcFlux.H"
#include "fvmDdt.H"
#include "fvcAverage.H"
#include "fvMatrix.H"
#include "fvmSup.H"
#include "CMULES.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(multiphaseSystem, 0);
defineRunTimeSelectionTable(multiphaseSystem, dictionary);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseSystem::multiphaseSystem
(
const fvMesh& mesh
)
:
phaseSystem(mesh),
cAlphas_(),
ddtAlphaMax_(0.0),
limitedPhiAlphas_(phaseModels_.size()),
Su_(phaseModels_.size()),
Sp_(phaseModels_.size())
{
label phasei = 0;
phases_.setSize(phaseModels_.size());
forAllIters(phaseModels_, iter)
{
phaseModel& pm = iter()();
phases_.set(phasei++, &pm);
}
mesh.solverDict("alpha").readEntry("cAlphas", cAlphas_);
// Initiate Su and Sp
forAllConstIters(phaseModels_, iter)
{
const phaseModel& pm = iter()();
Su_.insert
(
pm.name(),
volScalarField::Internal
(
IOobject
(
"Su" + pm.name(),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless/dimTime, Zero)
)
);
Sp_.insert
(
pm.name(),
volScalarField::Internal
(
IOobject
(
"Sp" + pm.name(),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless/dimTime, Zero)
)
);
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::multiphaseSystem::calculateSuSp()
{
forAllConstIters(totalPhasePairs_, iter)
{
const phasePair& pair = iter()();
const phaseModel& phase1 = pair.phase1();
const phaseModel& phase2 = pair.phase2();
const volScalarField& alpha1 = pair.phase1();
const volScalarField& alpha2 = pair.phase2();
tmp<volScalarField> tCoeffs1 = this->coeffs(phase1.name());
const volScalarField& coeffs1 = tCoeffs1();
tmp<volScalarField> tCoeffs2 = this->coeffs(phase2.name());
const volScalarField& coeffs2 = tCoeffs2();
// Phase 1 to phase 2
const phasePairKey key12
(
phase1.name(),
phase2.name(),
true
);
tmp<volScalarField> tdmdt12(this->dmdt(key12));
const volScalarField& dmdt12 = tdmdt12();
// Phase 2 to phase 1
const phasePairKey key21
(
phase2.name(),
phase1.name(),
true
);
tmp<volScalarField> tdmdt21(this->dmdt(key21));
const volScalarField& dmdt21 = tdmdt21();
volScalarField::Internal& SpPhase1 = Sp_[phase1.name()];
volScalarField::Internal& SuPhase1 = Su_[phase1.name()];
volScalarField::Internal& SpPhase2 = Sp_[phase2.name()];
volScalarField::Internal& SuPhase2 = Su_[phase2.name()];
const volScalarField dmdtNet(dmdt21 - dmdt12);
const volScalarField coeffs12(coeffs1 - coeffs2);
// NOTE: dmdtNet is distributed in terms =
// Source for phase 1 =
// dmdtNet/rho1
// - alpha1*dmdtNet(1/rho1 - 1/rho2)
forAll(dmdtNet, celli)
{
scalar dmdt21 = dmdtNet[celli];
scalar coeffs12Cell = coeffs12[celli];
scalar alpha1Limited = max(min(alpha1[celli], 1.0), 0.0);
// exp.
SuPhase1[celli] += coeffs1[celli]*dmdt21;
if (dmdt21 > 0)
{
if (coeffs12Cell > 0)
{
// imp
SpPhase1[celli] -= dmdt21*coeffs12Cell;
}
else if (coeffs12Cell < 0)
{
// exp
SuPhase1[celli] -=
dmdt21*coeffs12Cell*alpha1Limited;
}
}
else if (dmdt21 < 0)
{
if (coeffs12Cell > 0)
{
// exp
SuPhase1[celli] -=
dmdt21*coeffs12Cell*alpha1Limited;
}
else if (coeffs12Cell < 0)
{
// imp
SpPhase1[celli] -= dmdt21*coeffs12Cell;
}
}
}
forAll(dmdtNet, celli)
{
scalar dmdt12 = -dmdtNet[celli];
scalar coeffs21Cell = -coeffs12[celli];
scalar alpha2Limited = max(min(alpha2[celli], 1.0), 0.0);
// exp
SuPhase2[celli] += coeffs2[celli]*dmdt12;
if (dmdt12 > 0)
{
if (coeffs21Cell > 0)
{
// imp
SpPhase2[celli] -= dmdt12*coeffs21Cell;
}
else if (coeffs21Cell < 0)
{
// exp
SuPhase2[celli] -=
dmdt12*coeffs21Cell*alpha2Limited;
}
}
else if (dmdt12 < 0)
{
if (coeffs21Cell > 0)
{
// exp
SuPhase2[celli] -=
coeffs21Cell*dmdt12*alpha2Limited;
}
else if (coeffs21Cell < 0)
{
// imp
SpPhase2[celli] -= dmdt12*coeffs21Cell;
}
}
}
// Update ddtAlphaMax
ddtAlphaMax_ =
max(gMax((dmdt21*coeffs1)()), gMax((dmdt12*coeffs2)()));
}
}
void Foam::multiphaseSystem::solve()
{
const fvMesh& mesh = this->mesh();
const dictionary& alphaControls = mesh.solverDict("alpha");
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
label nAlphaCorr(alphaControls.get<label>("nAlphaCorr"));
mesh.solverDict("alpha").readEntry("cAlphas", cAlphas_);
PtrList<surfaceScalarField> phiAlphaCorrs(phases_.size());
const surfaceScalarField& phi = this->phi();
surfaceScalarField phic(mag((phi)/mesh_.magSf()));
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
surfaceScalarField::Boundary& phicBf = phic.boundaryFieldRef();
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
label phasei = 0;
for (phaseModel& phase1 : phases_)
{
const volScalarField& alpha1 = phase1;
phiAlphaCorrs.set
(
phasei,
new surfaceScalarField
(
"phi" + alpha1.name() + "Corr",
fvc::flux
(
phi,
alpha1,
"div(phi," + alpha1.name() + ')'
)
)
);
surfaceScalarField& phiAlphaCorr = phiAlphaCorrs[phasei];
for (phaseModel& phase2 : phases_)
{
const volScalarField& alpha2 = phase2;
if (&phase2 == &phase1) continue;
const phasePairKey key12(phase1.name(), phase2.name());
if (!cAlphas_.found(key12))
{
FatalErrorInFunction
<< "Phase compression factor (cAlpha) not found for : "
<< key12
<< exit(FatalError);
}
scalar cAlpha = cAlphas_.find(key12)();
phic = min(cAlpha*phic, max(phic));
surfaceScalarField phir(phic*nHatf(alpha1, alpha2));
word phirScheme
(
"div(phir," + alpha2.name() + ',' + alpha1.name() + ')'
);
phiAlphaCorr += fvc::flux
(
-fvc::flux(-phir, alpha2, phirScheme),
alpha1,
phirScheme
);
}
// Ensure that the flux at inflow BCs is preserved
forAll(phiAlphaCorr.boundaryField(), patchi)
{
fvsPatchScalarField& phiAlphaCorrp =
phiAlphaCorr.boundaryFieldRef()[patchi];
if (!phiAlphaCorrp.coupled())
{
const scalarField& phi1p = phi.boundaryField()[patchi];
const scalarField& alpha1p =
alpha1.boundaryField()[patchi];
forAll(phiAlphaCorrp, facei)
{
if (phi1p[facei] < 0)
{
phiAlphaCorrp[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
++phasei;
}
// Set Su and Sp to zero
for (const phaseModel& phase : phases_)
{
Su_[phase.name()] = dimensionedScalar("Su", dimless/dimTime, Zero);
Sp_[phase.name()] = dimensionedScalar("Sp", dimless/dimTime, Zero);
// Add alpha*div(U)
const volScalarField& alpha = phase;
Sp_[phase.name()] +=
fvc::div(phi);//*min(max(alpha, scalar(0)), scalar(1));
}
// Fill Su and Sp
calculateSuSp();
// Limit phiAlphaCorr on each phase
phasei = 0;
for (phaseModel& phase : phases_)
{
volScalarField& alpha1 = phase;
surfaceScalarField& phiAlphaCorr = phiAlphaCorrs[phasei];
volScalarField::Internal& Su = Su_[phase.name()];
volScalarField::Internal& Sp = Sp_[phase.name()];
MULES::limit
(
1.0/mesh_.time().deltaT().value(),
geometricOneField(),
alpha1,
phi,
phiAlphaCorr,
Sp,
Su,
oneField(),
zeroField(),
true
);
++phasei;
}
MULES::limitSum(phiAlphaCorrs);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
);
phasei = 0;
for (phaseModel& phase : phases_)
{
volScalarField& alpha1 = phase;
const volScalarField::Internal& Su = Su_[phase.name()];
const volScalarField::Internal& Sp = Sp_[phase.name()];
surfaceScalarField& phiAlpha = phiAlphaCorrs[phasei];
// Add a bounded upwind U-mean flux
phiAlpha += upwind<scalar>(mesh_, phi).flux(alpha1);
// fvScalarMatrix alpha1Eqn
// (
// fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
// + fv::gaussConvectionScheme<scalar>
// (
// mesh,
// phi,
// upwind<scalar>(mesh, phi)
// ).fvmDiv(phi, alpha1)
// ==
// Su + fvm::Sp(Sp, alpha1)
// );
//
// alpha1Eqn.solve();
//phiAlpha += alpha1Eqn.flux();
if (nAlphaSubCycles > 1)
{
for
(
subCycle<volScalarField> alphaSubCycle
(
alpha1,
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
phiAlpha,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
oneField(),
zeroField()
);
if (alphaSubCycle.index() == 1)
{
phase.alphaPhi() = phiAlpha;
}
else
{
phase.alphaPhi() += phiAlpha;
}
}
phase.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
phiAlpha,
Sp,
Su,
oneField(),
zeroField()
);
phase.alphaPhi() = phiAlpha;
}
++phasei;
}
if (acorr == nAlphaCorr - 1)
{
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
);
// Reset rhoPhi
rhoPhi_ = dimensionedScalar("rhoPhi", dimMass/dimTime, Zero);
for (phaseModel& phase : phases_)
{
volScalarField& alpha1 = phase;
sumAlpha += alpha1;
// Update rhoPhi
rhoPhi_ += fvc::interpolate(phase.rho()) * phase.alphaPhi();
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
volScalarField sumCorr(1.0 - sumAlpha);
for (phaseModel& phase : phases_)
{
volScalarField& alpha = phase;
//alpha += alpha*sumCorr;
Info<< alpha.name() << " volume fraction = "
<< alpha.weightedAverage(mesh.V()).value()
<< " Min(alpha) = " << min(alpha).value()
<< " Max(alpha) = " << max(alpha).value()
<< endl;
}
}
}
}
const Foam::UPtrList<Foam::phaseModel>& Foam::multiphaseSystem::phases() const
{
return phases_;
}
Foam::UPtrList<Foam::phaseModel>& Foam::multiphaseSystem::phases()
{
return phases_;
}
const Foam::phaseModel& Foam::multiphaseSystem::phase(const label i) const
{
return phases_[i];
}
Foam::phaseModel& Foam::multiphaseSystem::phase(const label i)
{
return phases_[i];
}
Foam::dimensionedScalar Foam::multiphaseSystem::ddtAlphaMax() const
{
return ddtAlphaMax_;
}
Foam::scalar Foam::multiphaseSystem::maxDiffNo() const
{
auto iter = phaseModels_.cbegin();
scalar maxVal = max(iter()->diffNo()).value();
for (++iter; iter != phaseModels_.cend(); ++iter)
{
maxVal = max(maxVal, max(iter()->diffNo()).value());
}
return maxVal * mesh_.time().deltaT().value();
}
const Foam::multiphaseSystem::compressionFluxTable&
Foam::multiphaseSystem::limitedPhiAlphas() const
{
return limitedPhiAlphas_;
}
Foam::multiphaseSystem::SuSpTable& Foam::multiphaseSystem::Su()
{
return Su_;
}
Foam::multiphaseSystem::SuSpTable& Foam::multiphaseSystem::Sp()
{
return Sp_;
}
bool Foam::multiphaseSystem::read()
{
return true;
}
// ************************************************************************* //

View File

@ -281,7 +281,7 @@ Foam::phaseSystem::phaseSystem
// Total phase pair
generatePairsTable();
// Update mu_
calcMu();
}
@ -903,7 +903,7 @@ void Foam::phaseSystem::correct()
{
iter()->correct();
}
calcMu();
}

View File

@ -78,7 +78,7 @@ public:
typedef HashTable<autoPtr<phaseModel>> phaseModelTable;
typedef HashTable<volScalarField::Internal> SuSpTable;
@ -116,7 +116,7 @@ protected:
//- Reference to the mesh
const fvMesh& mesh_;
//- Dynamic viscocity
volScalarField mu_;
@ -510,13 +510,13 @@ public:
(
const volScalarField& T
) = 0;
//- Return the volumetric rate transfer matrix
virtual tmp<fvScalarMatrix> volTransfer
(
const volScalarField& p
) = 0;
//- Calculate mass transfer for alpha's
virtual void alphaTransfer(SuSpTable& Su, SuSpTable& Sp) = 0;
@ -537,7 +537,7 @@ public:
//- Correct the mixture thermos
virtual void correct();
//- Correct mass sources
virtual void correctMassSources(const volScalarField& T) = 0;

View File

@ -1,14 +1,14 @@
{
tmp<volScalarField> tcp(thermo->Cp());
const volScalarField& cp = tcp();
const dimensionedScalar Cp1 = thermo->Cp1();
const dimensionedScalar Cp2 = thermo->Cp2();
rhoCp = rho*cp;
kappaEff = thermo->kappa() + rho*cp*turbulence->nut()/Prt;
const surfaceScalarField rhoCpPhi
(
"rhoCpPhi",

View File

@ -84,7 +84,7 @@ int main(int argc, char *argv[])
#include "createAlphaFluxes.H"
#include "initCorrectPhi.H"
#include "createUfIfPresent.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
@ -99,13 +99,13 @@ int main(int argc, char *argv[])
while (runTime.run())
{
#include "readDyMControls.H"
// Store divU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
volScalarField divU("divU", fvc::div(fvc::absolute(phi, U)));
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
@ -157,7 +157,7 @@ int main(int argc, char *argv[])
}
}
}
mixture->correct();
#include "alphaControls.H"
@ -165,7 +165,7 @@ int main(int argc, char *argv[])
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{

View File

@ -58,14 +58,14 @@ Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::constant
temperaturePhaseChangeTwoPhaseMixture(mixture, mesh),
coeffC_
(
"coeffC",
dimless/dimTime/dimTemperature,
"coeffC",
dimless/dimTime/dimTemperature,
optionalSubDict(type() + "Coeffs")
),
coeffE_
(
"coeffE",
dimless/dimTime/dimTemperature,
"coeffE",
dimless/dimTime/dimTemperature,
optionalSubDict(type() + "Coeffs")
)
{}
@ -121,7 +121,7 @@ Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::mDot() const
const dimensionedScalar& TSat = thermo.TSat();
const dimensionedScalar T0(dimTemperature, Zero);
if (mesh_.time().outputTime())
{
volScalarField mDot
@ -194,9 +194,9 @@ Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::TSource() const
);
const dimensionedScalar& TSat = thermo.TSat();
dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();
volScalarField limitedAlpha1
(
min(max(mixture_.alpha1(), scalar(0)), scalar(1))
@ -206,7 +206,7 @@ Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::TSource() const
(
min(max(mixture_.alpha2(), scalar(0)), scalar(1))
);
const volScalarField Vcoeff
(
coeffE_*mixture_.rho1()*limitedAlpha1*L
@ -216,7 +216,7 @@ Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::TSource() const
coeffC_*mixture_.rho2()*limitedAlpha2*L
);
TSource =
TSource =
fvm::Sp(Vcoeff, T) - Vcoeff*TSat
- fvm::Sp(Ccoeff, T) + Ccoeff*TSat;

View File

@ -98,7 +98,7 @@ public:
// coefficient to multiply (Tsat - T) for the condensation rate
// and a coefficient to multiply (T - Tsat) for the vaporisation rate
virtual Pair<tmp<volScalarField>> mDotDeltaT() const;
//- Source for T equarion
virtual tmp<fvScalarMatrix> TSource() const;

View File

@ -64,10 +64,10 @@ interfaceHeatResistance
temperaturePhaseChangeTwoPhaseMixture(mixture, mesh),
R_
(
"R",
"R",
dimPower/dimArea/dimTemperature, optionalSubDict(type() + "Coeffs")
),
interfaceArea_
(
IOobject
@ -81,7 +81,7 @@ interfaceHeatResistance
mesh_,
dimensionedScalar(dimless/dimLength, Zero)
),
mDotc_
(
IOobject
@ -95,7 +95,7 @@ interfaceHeatResistance
mesh_,
dimensionedScalar(dimDensity/dimTime, Zero)
),
mDote_
(
IOobject
@ -109,7 +109,7 @@ interfaceHeatResistance
mesh_,
dimensionedScalar(dimDensity/dimTime, Zero)
),
spread_
(
optionalSubDict(type() + "Coeffs").get<scalar>("spread")
@ -148,7 +148,7 @@ mDotAlphal() const
(
min(max(mixture_.alpha2(), scalar(0)), scalar(1))
);
return Pair<tmp<volScalarField>>
(
(mDotc_/(limitedAlpha2 + SMALL)),
@ -161,10 +161,10 @@ Foam::Pair<Foam::tmp<Foam::volScalarField>>
Foam::temperaturePhaseChangeTwoPhaseMixtures::interfaceHeatResistance::
mDot() const
{
return Pair<tmp<volScalarField>>
(
tmp<volScalarField>(mDotc_),
tmp<volScalarField>(mDotc_),
tmp<volScalarField>(mDote_)
);
}
@ -179,20 +179,20 @@ mDotDeltaT() const
(
mesh_.lookupObject<basicThermo>(basicThermo::dictName)
);
const volScalarField& T = mesh_.lookupObject<volScalarField>("T");
const dimensionedScalar& TSat = thermo.TSat();
Pair<tmp<volScalarField>> mDotce(mDot());
return Pair<tmp<volScalarField>>
(
mDotc_*pos(TSat - T.oldTime())/(TSat - T.oldTime()),
-mDote_*pos(T.oldTime() - TSat)/(T.oldTime() - TSat)
);
}
@ -221,7 +221,7 @@ TSource() const
);
const dimensionedScalar& TSat = thermo.TSat();
// interface heat resistance
volScalarField IHRcoeff = interfaceArea_*R_;
@ -234,10 +234,10 @@ TSource() const
void Foam::temperaturePhaseChangeTwoPhaseMixtures::interfaceHeatResistance::
correct()
{
// Update Interface
updateInterface();
// Update mDotc_ and mDote_
const volScalarField& T = mesh_.lookupObject<volScalarField>("T");
@ -251,16 +251,16 @@ correct()
const dimensionedScalar T0(dimTemperature, Zero);
dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();
// interface heat resistance
mDotc_ = interfaceArea_*R_*max(TSat - T, T0)/L;
mDote_ = interfaceArea_*R_*(T - TSat)/L;
forAll(mDotc_, celli)
{
scalar rhobyDt = mixture_.rho1().value()/mesh_.time().deltaTValue();
scalar maxEvap = mixture_.alpha1()[celli]*rhobyDt; // positive
scalar maxCond = -mixture_.alpha2()[celli]*rhobyDt; // negative
scalar maxCond = -mixture_.alpha2()[celli]*rhobyDt; // negative
mDote_[celli] = min(max(mDote_[celli], maxCond), maxEvap);
mDotc_[celli] = min(max(mDotc_[celli], maxCond), maxEvap);
}
@ -278,7 +278,7 @@ updateInterface()
);
const dimensionedScalar& TSat = thermo.TSat();
// interface heat resistance
// Interpolating alpha1 cell centre values to mesh points (vertices)
scalarField ap
@ -294,7 +294,7 @@ updateInterface()
interfaceArea_[celli] = 0;
if (status == 0) // cell is cut
{
interfaceArea_[celli] =
interfaceArea_[celli] =
mag(cutCell.isoFaceArea())/mesh_.V()[celli];
}
}
@ -309,14 +309,14 @@ updateInterface()
forAll(pp.faceCells(),i)
{
const label pCelli = pp.faceCells()[i];
if
(
(TSat.value() - T[pCelli]) > 0
(TSat.value() - T[pCelli]) > 0
&& mixture_.alpha1()[pCelli] < 0.9
)
{
interfaceArea_[pCelli] =
interfaceArea_[pCelli] =
mag(pp.faceAreas()[i])/mesh_.V()[pCelli];
}
}
@ -331,23 +331,23 @@ vDot() const
dimensionedScalar D
(
"D",
dimArea,
"D",
dimArea,
spread_/sqr(gAverage(mesh_.nonOrthDeltaCoeffs()))
);
const volScalarField& alpha1 = mixture_.alpha1();
const volScalarField& alpha2 = mixture_.alpha2();
const dimensionedScalar MDotMin("MdotMin", mDotc_.dimensions(), 1e-3);
Pair<tmp<volScalarField>> mDotSpread
(
tmp<volScalarField>(mDotc_*0.0),
tmp<volScalarField>(mDotc_*0.0),
tmp<volScalarField>(mDote_*0.0)
);
if (max(mDotc_) > MDotMin)
{
fvc::spreadSource
@ -373,18 +373,18 @@ vDot() const
1e-3
);
}
dimensionedScalar pCoeff(1.0/mixture_.rho1() - 1.0/mixture_.rho2());
if (mesh_.time().outputTime())
{
volScalarField mDotS("mDotSpread", mDotSpread[1].ref());
mDotS.write();
}
return Pair<tmp<volScalarField>>
(
pCoeff*mDotSpread[0],
pCoeff*mDotSpread[0],
-pCoeff*mDotSpread[1]
);
}

View File

@ -28,9 +28,9 @@ Class
Foam::phaseChangeTwoPhaseMixtures::interfaceHeatResistance
Description
Interface Heat Resistance type of condensation/saturation model using
Interface Heat Resistance type of condensation/saturation model using
spread source distribution following:
References:
\verbatim
Hardt, S., Wondra, F. (2008).
@ -73,22 +73,22 @@ class interfaceHeatResistance
//- Interface area
volScalarField interfaceArea_;
//- Mass condensation source
volScalarField mDotc_;
//- Mass evaporation source
volScalarField mDote_;
//- Spread for mass source
scalar spread_;
// Private member functions
//- Update interface area
void updateInterface();
public:
@ -124,17 +124,17 @@ public:
// coefficient to multiply (Tsat - T) for the condensation rate
// and a coefficient to multiply (T - Tsat) for the vaporisation rate
virtual Pair<tmp<volScalarField>> mDotDeltaT() const;
//- Source for T equarion
virtual tmp<fvScalarMatrix> TSource() const;
//- Volumetric source for alpha (used by alphaEq)
virtual Pair<tmp<volScalarField>> vDotAlphal() const;
//- Return the volumetric condensation and vaporisation rates as
// coefficients (used by p_rghEq)
virtual Pair<tmp<volScalarField>> vDot() const;
//- Correct the interfaceHeatResistance phaseChange model
virtual void correct();

View File

@ -68,7 +68,7 @@ temperaturePhaseChangeTwoPhaseMixture
Foam::Pair<Foam::tmp<Foam::volScalarField>>
Foam::temperaturePhaseChangeTwoPhaseMixture::vDotAlphal() const
{
{
volScalarField alphalCoeff
(
1.0/mixture_.rho1() - mixture_.alpha1()

View File

@ -141,7 +141,7 @@ public:
// coefficient to multiply (Tsat - T) for the condensation rate
// and a coefficient to multiply (T - Tsat) for the vaporisation rate
virtual Pair<tmp<volScalarField>> mDotDeltaT() const = 0;
//- Source for T equarion
virtual tmp<fvScalarMatrix> TSource() const = 0;

View File

@ -114,7 +114,7 @@
}
rhoPhi = talphaPhi()*(rho1 - rho2) + phi*rho2;
// Cache alphaPhi
alphaPhi10 = talphaPhi();

View File

@ -332,7 +332,7 @@ void Foam::fvc::spreadSource
)
{
const fvMesh& mesh = alpha1.mesh();
volScalarField mDotSmear
(
IOobject
@ -351,43 +351,43 @@ void Foam::fvc::spreadSource
//- Smearing of source term field
fvScalarMatrix mSourceEqn
(
fvm::Sp(scalar(1), mDotSmear)
- fvm::laplacian(D, mDotSmear)
==
fvm::Sp(scalar(1), mDotSmear)
- fvm::laplacian(D, mDotSmear)
==
mDotIn
);
mSourceEqn.solve();
// Cut cells with cutoff < alpha1 < 1-cutoff and rescale remaining
// Cut cells with cutoff < alpha1 < 1-cutoff and rescale remaining
// source term field
dimensionedScalar intvDotLiquid("intvDotLiquid", dimMass/dimTime, 0.0);
dimensionedScalar intvDotVapor ("intvDotVapor", dimMass/dimTime, 0.0);
const scalarField& Vol = mesh.V();
forAll(mesh.C(), celli)
{
if (alpha1[celli] < cutoff)
{
intvDotVapor.value() +=
intvDotVapor.value() +=
alpha2[celli]*mDotSmear[celli]*Vol[celli];
}
else if (alpha1[celli] > 1.0 - cutoff)
{
intvDotLiquid.value() +=
intvDotLiquid.value() +=
alpha1[celli]*mDotSmear[celli]*Vol[celli];
}
}
reduce(intvDotVapor.value(), sumOp<scalar>());
reduce(intvDotLiquid.value(), sumOp<scalar>());
//- Calculate Nl and Nv
dimensionedScalar Nl ("Nl", dimless, Zero);
dimensionedScalar Nv ("Nv", dimless, Zero);
dimensionedScalar Nv ("Nv", dimless, Zero);
const dimensionedScalar intmSource0(fvc::domainIntegrate(mDotIn));
if (intvDotVapor.value() > VSMALL)

View File

@ -44,11 +44,11 @@ Description
gradient of alpha is large (where the difference between the values
in neighbouring cells is larger than alphaDiff) away from that
starting point of the sweep.
spreadSource: spread a source field (mDotIn) for two phase multiphase using
a laplacian operator and diffussivity D.
The spread source (mDotOut) is distributed from alpha1 < cutoff
The spread source (mDotOut) is distributed from alpha1 < cutoff
to alpha1 > 1 - cutoff, and it is zero across the interface
SourceFiles
@ -91,7 +91,7 @@ namespace fvc
const label nLayers,
const scalar alphaDiff = 0.2
);
void spreadSource
(
volScalarField& mDotOut,

View File

@ -55,7 +55,7 @@ void Foam::functionObjects::interfaceHeight::writePositions()
const uniformDimensionedVectorField& g =
mesh_.time().lookupObject<uniformDimensionedVectorField>("g");
vector gHat = vector::zero;
if (mag(direction_) > 0.0)
{
gHat = direction_/mag(direction_);
@ -237,7 +237,7 @@ Foam::functionObjects::interfaceHeight::interfaceHeight
{
read(dict);
resetNames({"height", "position"});
writeFileHeader(fileID::heightFile);
writeFileHeader(fileID::positionFile);
}
@ -253,7 +253,7 @@ Foam::functionObjects::interfaceHeight::~interfaceHeight()
bool Foam::functionObjects::interfaceHeight::read(const dictionary& dict)
{
dict.readIfPresent("alpha", alphaName_);
dict.readIfPresent("liquid", liquid_);
dict.lookup("locations") >> locations_;

View File

@ -96,9 +96,8 @@ class interfaceHeight
//- Interpolation scheme
word interpolationScheme_;
//- Direction of interface motion
//- Direction of interface motion
vector direction_;

View File

@ -24,7 +24,7 @@ boundaryField
{
type zeroGradient;
}
outlet
{
type inletOutlet;

View File

@ -24,7 +24,7 @@ boundaryField
{
type zeroGradient;
}
outlet
{
type inletOutlet;

View File

@ -1,11 +1,12 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
# Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions
cd ${0%/*} || exit 1 # Run from this directory
. $WM_PROJECT_DIR/bin/tools/RunFunctions # Tutorial run functions
#------------------------------------------------------------------------------
runApplication blockMesh
restore0Dir
# copy 0 folder to 1.36
cp -r 0 1.36
cp system/setAlphaFieldDict.liquid system/setAlphaFieldDict
runApplication setAlphaField

View File

@ -1,8 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
# Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions
cd ${0%/*} || exit 1 # Run from this directory
. $WM_PROJECT_DIR/bin/tools/RunFunctions # Tutorial run functions
#------------------------------------------------------------------------------
runApplication blockMesh
restore0Dir

View File

@ -31,7 +31,7 @@ divSchemes
div(rhoPhi,U) Gauss vanLeerV;
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
div(rhoCpPhi,T) Gauss vanLeer;
div((interpolate(cp)*rhoPhi),T) Gauss linear;
}