COMP: avoid ambiguous construct from tmp - solvers/ combustion
This commit is contained in:
parent
7b5bff1a9e
commit
c5ee4e1b04
@ -34,8 +34,8 @@ namespace XiEqModels
|
||||
{
|
||||
defineTypeNameAndDebug(basicSubGrid, 0);
|
||||
addToRunTimeSelectionTable(XiEqModel, basicSubGrid, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -123,20 +123,24 @@ Foam::tmp<Foam::volScalarField> Foam::XiEqModels::basicSubGrid::XiEq() const
|
||||
const objectRegistry& db = Su_.db();
|
||||
const volVectorField& U = db.lookupObject<volVectorField>("U");
|
||||
|
||||
volScalarField magU = mag(U);
|
||||
volVectorField Uhat =
|
||||
U/(mag(U) + dimensionedScalar("Usmall", U.dimensions(), 1e-4));
|
||||
volScalarField magU(mag(U));
|
||||
volVectorField Uhat
|
||||
(
|
||||
U/(mag(U) + dimensionedScalar("Usmall", U.dimensions(), 1e-4))
|
||||
);
|
||||
|
||||
volScalarField n = max(N_ - (Uhat & ns_ & Uhat), scalar(1e-4));
|
||||
volScalarField n(max(N_ - (Uhat & ns_ & Uhat), scalar(1e-4)));
|
||||
|
||||
volScalarField b = (Uhat & B_ & Uhat)/n;
|
||||
volScalarField b((Uhat & B_ & Uhat)/n);
|
||||
|
||||
volScalarField up = sqrt((2.0/3.0)*turbulence_.k());
|
||||
volScalarField up(sqrt((2.0/3.0)*turbulence_.k()));
|
||||
|
||||
volScalarField XiSubEq =
|
||||
volScalarField XiSubEq
|
||||
(
|
||||
scalar(1)
|
||||
+ max(2.2*sqrt(b), min(0.34*magU/up, scalar(1.6)))
|
||||
*min(0.25*n, scalar(1));
|
||||
*min(0.25*n, scalar(1))
|
||||
);
|
||||
|
||||
return XiSubEq*XiEqModel_->XiEq();
|
||||
}
|
||||
|
@ -78,7 +78,7 @@ void PDRkEpsilon::correct()
|
||||
|
||||
RASModel::correct();
|
||||
|
||||
volScalarField divU = fvc::div(phi_/fvc::interpolate(rho_));
|
||||
volScalarField divU(fvc::div(phi_/fvc::interpolate(rho_)));
|
||||
|
||||
if (mesh_.moving())
|
||||
{
|
||||
@ -99,7 +99,7 @@ void PDRkEpsilon::correct()
|
||||
const PDRDragModel& drag =
|
||||
U_.db().lookupObject<PDRDragModel>("PDRDragModel");
|
||||
|
||||
volScalarField GR = drag.Gk();
|
||||
volScalarField GR(drag.Gk());
|
||||
|
||||
// Dissipation equation
|
||||
tmp<fvScalarMatrix> epsEqn
|
||||
|
@ -34,9 +34,11 @@ Description
|
||||
|
||||
if (mesh.nInternalFaces())
|
||||
{
|
||||
scalarField sumPhi =
|
||||
scalarField sumPhi
|
||||
(
|
||||
fvc::surfaceSum(mag(phiSt))().internalField()
|
||||
/rho.internalField();
|
||||
/ rho.internalField()
|
||||
);
|
||||
|
||||
StCoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
|
||||
|
||||
|
@ -7,7 +7,7 @@
|
||||
betav*rho*g
|
||||
);
|
||||
|
||||
volSymmTensorField invA = inv(I*UEqn.A() + drag->Dcu());
|
||||
volSymmTensorField invA(inv(I*UEqn.A() + drag->Dcu()));
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
|
@ -34,8 +34,8 @@ namespace XiEqModels
|
||||
{
|
||||
defineTypeNameAndDebug(Gulder, 0);
|
||||
addToRunTimeSelectionTable(XiEqModel, Gulder, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -64,15 +64,18 @@ Foam::XiEqModels::Gulder::~Gulder()
|
||||
|
||||
Foam::tmp<Foam::volScalarField> Foam::XiEqModels::Gulder::XiEq() const
|
||||
{
|
||||
volScalarField up = sqrt((2.0/3.0)*turbulence_.k());
|
||||
volScalarField up(sqrt((2.0/3.0)*turbulence_.k()));
|
||||
const volScalarField& epsilon = turbulence_.epsilon();
|
||||
|
||||
volScalarField tauEta = sqrt(mag(thermo_.muu()/(thermo_.rhou()*epsilon)));
|
||||
volScalarField tauEta(sqrt(mag(thermo_.muu()/(thermo_.rhou()*epsilon))));
|
||||
|
||||
volScalarField Reta = up/
|
||||
volScalarField Reta
|
||||
(
|
||||
sqrt(epsilon*tauEta)
|
||||
+ dimensionedScalar("1e-8", up.dimensions(), 1e-8)
|
||||
up
|
||||
/ (
|
||||
sqrt(epsilon*tauEta)
|
||||
+ dimensionedScalar("1e-8", up.dimensions(), 1e-8)
|
||||
)
|
||||
);
|
||||
|
||||
return 1.0 + XiEqCoef*sqrt(up/(Su_ + SuMin))*Reta;
|
||||
|
@ -34,8 +34,8 @@ namespace XiEqModels
|
||||
{
|
||||
defineTypeNameAndDebug(SCOPEXiEq, 0);
|
||||
addToRunTimeSelectionTable(XiEqModel, SCOPEXiEq, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -83,13 +83,13 @@ Foam::tmp<Foam::volScalarField> Foam::XiEqModels::SCOPEXiEq::XiEq() const
|
||||
const volScalarField& k = turbulence_.k();
|
||||
const volScalarField& epsilon = turbulence_.epsilon();
|
||||
|
||||
volScalarField up = sqrt((2.0/3.0)*k);
|
||||
volScalarField l = (lCoef*sqrt(3.0/2.0))*up*k/epsilon;
|
||||
volScalarField Rl = up*l*thermo_.rhou()/thermo_.muu();
|
||||
volScalarField up(sqrt((2.0/3.0)*k));
|
||||
volScalarField l((lCoef*sqrt(3.0/2.0))*up*k/epsilon);
|
||||
volScalarField Rl(up*l*thermo_.rhou()/thermo_.muu());
|
||||
|
||||
volScalarField upBySu = up/(Su_ + SuMin);
|
||||
volScalarField K = 0.157*upBySu/sqrt(Rl);
|
||||
volScalarField Ma = MaModel.Ma();
|
||||
volScalarField upBySu(up/(Su_ + SuMin));
|
||||
volScalarField K(0.157*upBySu/sqrt(Rl));
|
||||
volScalarField Ma(MaModel.Ma());
|
||||
|
||||
tmp<volScalarField> tXiEq
|
||||
(
|
||||
|
@ -34,8 +34,8 @@ namespace XiEqModels
|
||||
{
|
||||
defineTypeNameAndDebug(instability, 0);
|
||||
addToRunTimeSelectionTable(XiEqModel, instability, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -64,7 +64,7 @@ Foam::XiEqModels::instability::~instability()
|
||||
|
||||
Foam::tmp<Foam::volScalarField> Foam::XiEqModels::instability::XiEq() const
|
||||
{
|
||||
volScalarField turbXiEq = XiEqModel_->XiEq();
|
||||
volScalarField turbXiEq(XiEqModel_->XiEq());
|
||||
return XiEqIn/turbXiEq + turbXiEq;
|
||||
}
|
||||
|
||||
|
@ -34,8 +34,8 @@ namespace XiGModels
|
||||
{
|
||||
defineTypeNameAndDebug(KTS, 0);
|
||||
addToRunTimeSelectionTable(XiGModel, KTS, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -63,10 +63,11 @@ Foam::XiGModels::KTS::~KTS()
|
||||
|
||||
Foam::tmp<Foam::volScalarField> Foam::XiGModels::KTS::G() const
|
||||
{
|
||||
volScalarField up = sqrt((2.0/3.0)*turbulence_.k());
|
||||
// volScalarField up(sqrt((2.0/3.0)*turbulence_.k()));
|
||||
const volScalarField& epsilon = turbulence_.epsilon();
|
||||
|
||||
volScalarField tauEta = sqrt(mag(thermo_.muu()/(thermo_.rhou()*epsilon)));
|
||||
tmp<volScalarField> tauEta =
|
||||
sqrt(mag(thermo_.muu()/(thermo_.rhou()*epsilon)));
|
||||
|
||||
return GEtaCoef/tauEta;
|
||||
}
|
||||
|
@ -65,7 +65,7 @@ Foam::XiGModels::instabilityG::~instabilityG()
|
||||
|
||||
Foam::tmp<Foam::volScalarField> Foam::XiGModels::instabilityG::G() const
|
||||
{
|
||||
volScalarField turbXiG = XiGModel_->G();
|
||||
volScalarField turbXiG(XiGModel_->G());
|
||||
return GIn*GIn/(GIn + turbXiG) + turbXiG;
|
||||
}
|
||||
|
||||
|
@ -34,8 +34,8 @@ namespace XiModels
|
||||
{
|
||||
defineTypeNameAndDebug(algebraic, 0);
|
||||
addToRunTimeSelectionTable(XiModel, algebraic, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -74,12 +74,12 @@ Foam::tmp<Foam::volScalarField> Foam::XiModels::algebraic::Db() const
|
||||
|
||||
void Foam::XiModels::algebraic::correct()
|
||||
{
|
||||
volScalarField XiEqEta = XiEqModel_->XiEq();
|
||||
volScalarField GEta = XiGModel_->G();
|
||||
volScalarField XiEqEta(XiEqModel_->XiEq());
|
||||
volScalarField GEta(XiGModel_->G());
|
||||
|
||||
volScalarField R = GEta*XiEqEta/(XiEqEta - 0.999);
|
||||
volScalarField R(GEta*XiEqEta/(XiEqEta - 0.999));
|
||||
|
||||
volScalarField XiEqStar = R/(R - GEta);
|
||||
volScalarField XiEqStar(R/(R - GEta));
|
||||
|
||||
Xi_ == 1.0 + (1.0 + (2*XiShapeCoef)*(0.5 - b_))*(XiEqStar - 1.0);
|
||||
}
|
||||
|
@ -34,8 +34,8 @@ namespace XiModels
|
||||
{
|
||||
defineTypeNameAndDebug(transport, 0);
|
||||
addToRunTimeSelectionTable(XiModel, transport, dictionary);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -77,17 +77,19 @@ void Foam::XiModels::transport::correct
|
||||
const fv::convectionScheme<scalar>& mvConvection
|
||||
)
|
||||
{
|
||||
volScalarField XiEqEta = XiEqModel_->XiEq();
|
||||
volScalarField GEta = XiGModel_->G();
|
||||
volScalarField XiEqEta(XiEqModel_->XiEq());
|
||||
volScalarField GEta(XiGModel_->G());
|
||||
|
||||
volScalarField R = GEta*XiEqEta/(XiEqEta - 0.999);
|
||||
volScalarField R(GEta*XiEqEta/(XiEqEta - 0.999));
|
||||
|
||||
volScalarField XiEqStar = R/(R - GEta);
|
||||
volScalarField XiEqStar(R/(R - GEta));
|
||||
|
||||
volScalarField XiEq =
|
||||
1.0 + (1.0 + (2*XiShapeCoef)*(0.5 - b_))*(XiEqStar - 1.0);
|
||||
volScalarField XiEq
|
||||
(
|
||||
1.0 + (1.0 + (2*XiShapeCoef)*(0.5 - b_))*(XiEqStar - 1.0)
|
||||
);
|
||||
|
||||
volScalarField G = R*(XiEq - 1.0)/XiEq;
|
||||
volScalarField G(R*(XiEq - 1.0)/XiEq);
|
||||
|
||||
const objectRegistry& db = b_.db();
|
||||
const volScalarField& betav = db.lookupObject<volScalarField>("betav");
|
||||
|
@ -25,20 +25,20 @@ if (ign.ignited())
|
||||
|
||||
// Unburnt gas density
|
||||
// ~~~~~~~~~~~~~~~~~~~
|
||||
volScalarField rhou = thermo.rhou();
|
||||
volScalarField rhou(thermo.rhou());
|
||||
|
||||
// Calculate flame normal etc.
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
//volVectorField n = fvc::grad(b);
|
||||
volVectorField n = fvc::reconstruct(fvc::snGrad(b)*mesh.magSf());
|
||||
// volVectorField n(fvc::grad(b));
|
||||
volVectorField n(fvc::reconstruct(fvc::snGrad(b)*mesh.magSf()));
|
||||
|
||||
volScalarField mgb("mgb", mag(n));
|
||||
|
||||
dimensionedScalar dMgb("dMgb", mgb.dimensions(), SMALL);
|
||||
|
||||
{
|
||||
volScalarField bc = b*c;
|
||||
volScalarField bc(b*c);
|
||||
|
||||
dMgb += 1.0e-3*
|
||||
(bc*mgb)().weightedAverage(mesh.V())
|
||||
@ -47,8 +47,8 @@ if (ign.ignited())
|
||||
|
||||
mgb += dMgb;
|
||||
|
||||
surfaceVectorField Sfhat = mesh.Sf()/mesh.magSf();
|
||||
surfaceVectorField nfVec = fvc::interpolate(n);
|
||||
surfaceVectorField Sfhat(mesh.Sf()/mesh.magSf());
|
||||
surfaceVectorField nfVec(fvc::interpolate(n));
|
||||
nfVec += Sfhat*(fvc::snGrad(b) - (Sfhat & nfVec));
|
||||
nfVec /= (mag(nfVec) + dMgb);
|
||||
surfaceScalarField nf("nf", mesh.Sf() & nfVec);
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = invA & UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
|
@ -2,18 +2,18 @@ if (ign.ignited())
|
||||
{
|
||||
// progress variable
|
||||
// ~~~~~~~~~~~~~~~~~
|
||||
volScalarField c = scalar(1) - b;
|
||||
volScalarField c(scalar(1) - b);
|
||||
|
||||
// Unburnt gas density
|
||||
// ~~~~~~~~~~~~~~~~~~~
|
||||
volScalarField rhou = thermo.rhou();
|
||||
volScalarField rhou(thermo.rhou());
|
||||
|
||||
// Calculate flame normal etc.
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
volVectorField n = fvc::grad(b);
|
||||
volVectorField n(fvc::grad(b));
|
||||
|
||||
volScalarField mgb = mag(n);
|
||||
volScalarField mgb(mag(n));
|
||||
|
||||
dimensionedScalar dMgb = 1.0e-3*
|
||||
(b*c*mgb)().weightedAverage(mesh.V())
|
||||
@ -22,11 +22,11 @@ if (ign.ignited())
|
||||
|
||||
mgb += dMgb;
|
||||
|
||||
surfaceVectorField SfHat = mesh.Sf()/mesh.magSf();
|
||||
surfaceVectorField nfVec = fvc::interpolate(n);
|
||||
surfaceVectorField SfHat(mesh.Sf()/mesh.magSf());
|
||||
surfaceVectorField nfVec(fvc::interpolate(n));
|
||||
nfVec += SfHat*(fvc::snGrad(b) - (SfHat & nfVec));
|
||||
nfVec /= (mag(nfVec) + dMgb);
|
||||
surfaceScalarField nf = (mesh.Sf() & nfVec);
|
||||
surfaceScalarField nf((mesh.Sf() & nfVec));
|
||||
n /= mgb;
|
||||
|
||||
|
||||
@ -34,7 +34,7 @@ if (ign.ignited())
|
||||
|
||||
// Calculate turbulent flame speed flux
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
surfaceScalarField phiSt = fvc::interpolate(rhou*StCorr*Su*Xi)*nf;
|
||||
surfaceScalarField phiSt(fvc::interpolate(rhou*StCorr*Su*Xi)*nf);
|
||||
|
||||
scalar StCoNum = max
|
||||
(
|
||||
@ -71,16 +71,20 @@ if (ign.ignited())
|
||||
// Calculate coefficients for Gulder's flame speed correlation
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
volScalarField up = uPrimeCoef*sqrt((2.0/3.0)*turbulence->k());
|
||||
//volScalarField up = sqrt(mag(diag(n * n) & diag(turbulence->r())));
|
||||
volScalarField up(uPrimeCoef*sqrt((2.0/3.0)*turbulence->k()));
|
||||
//volScalarField up(sqrt(mag(diag(n * n) & diag(turbulence->r()))));
|
||||
|
||||
volScalarField epsilon = pow(uPrimeCoef, 3)*turbulence->epsilon();
|
||||
volScalarField epsilon(pow(uPrimeCoef, 3)*turbulence->epsilon());
|
||||
|
||||
volScalarField tauEta = sqrt(thermo.muu()/(rhou*epsilon));
|
||||
volScalarField tauEta(sqrt(thermo.muu()/(rhou*epsilon)));
|
||||
|
||||
volScalarField Reta = up/
|
||||
volScalarField Reta
|
||||
(
|
||||
sqrt(epsilon*tauEta) + dimensionedScalar("1e-8", up.dimensions(), 1e-8)
|
||||
up
|
||||
/ (
|
||||
sqrt(epsilon*tauEta)
|
||||
+ dimensionedScalar("1e-8", up.dimensions(), 1e-8)
|
||||
)
|
||||
);
|
||||
|
||||
//volScalarField l = 0.337*k*sqrt(k)/epsilon;
|
||||
@ -88,34 +92,38 @@ if (ign.ignited())
|
||||
|
||||
// Calculate Xi flux
|
||||
// ~~~~~~~~~~~~~~~~~
|
||||
surfaceScalarField phiXi =
|
||||
surfaceScalarField phiXi
|
||||
(
|
||||
phiSt
|
||||
- fvc::interpolate(fvc::laplacian(turbulence->alphaEff(), b)/mgb)*nf
|
||||
+ fvc::interpolate(rho)*fvc::interpolate(Su*(1.0/Xi - Xi))*nf;
|
||||
+ fvc::interpolate(rho)*fvc::interpolate(Su*(1.0/Xi - Xi))*nf
|
||||
);
|
||||
|
||||
|
||||
// Calculate mean and turbulent strain rates
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
volVectorField Ut = U + Su*Xi*n;
|
||||
volScalarField sigmat = (n & n)*fvc::div(Ut) - (n & fvc::grad(Ut) & n);
|
||||
volVectorField Ut(U + Su*Xi*n);
|
||||
volScalarField sigmat((n & n)*fvc::div(Ut) - (n & fvc::grad(Ut) & n));
|
||||
|
||||
volScalarField sigmas =
|
||||
volScalarField sigmas
|
||||
(
|
||||
((n & n)*fvc::div(U) - (n & fvc::grad(U) & n))/Xi
|
||||
+ (
|
||||
(n & n)*fvc::div(Su*n)
|
||||
- (n & fvc::grad(Su*n) & n)
|
||||
)*(Xi + scalar(1))/(2*Xi);
|
||||
)*(Xi + scalar(1))/(2*Xi)
|
||||
);
|
||||
|
||||
|
||||
// Calculate the unstrained laminar flame speed
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
volScalarField Su0 = unstrainedLaminarFlameSpeed()();
|
||||
volScalarField Su0(unstrainedLaminarFlameSpeed()());
|
||||
|
||||
|
||||
// Calculate the laminar flame speed in equilibrium with the applied strain
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
volScalarField SuInf = Su0*max(scalar(1) - sigmas/sigmaExt, scalar(0.01));
|
||||
volScalarField SuInf(Su0*max(scalar(1) - sigmas/sigmaExt, scalar(0.01)));
|
||||
|
||||
if (SuModel == "unstrained")
|
||||
{
|
||||
@ -130,9 +138,11 @@ if (ign.ignited())
|
||||
// Solve for the strained laminar flame speed
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
volScalarField Rc =
|
||||
volScalarField Rc
|
||||
(
|
||||
(sigmas*SuInf*(Su0 - SuInf) + sqr(SuMin)*sigmaExt)
|
||||
/(sqr(Su0 - SuInf) + sqr(SuMin));
|
||||
/(sqr(Su0 - SuInf) + sqr(SuMin))
|
||||
);
|
||||
|
||||
fvScalarMatrix SuEqn
|
||||
(
|
||||
@ -183,17 +193,21 @@ if (ign.ignited())
|
||||
// with a linear correction function to give a plausible profile for Xi
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
volScalarField XiEqStar =
|
||||
scalar(1.001) + XiCoef*sqrt(up/(Su + SuMin))*Reta;
|
||||
volScalarField XiEqStar
|
||||
(
|
||||
scalar(1.001) + XiCoef*sqrt(up/(Su + SuMin))*Reta
|
||||
);
|
||||
|
||||
volScalarField XiEq =
|
||||
volScalarField XiEq
|
||||
(
|
||||
scalar(1.001)
|
||||
+ (scalar(1) + (2*XiShapeCoef)*(scalar(0.5) - b))
|
||||
*(XiEqStar - scalar(1.001));
|
||||
*(XiEqStar - scalar(1.001))
|
||||
);
|
||||
|
||||
volScalarField Gstar = 0.28/tauEta;
|
||||
volScalarField R = Gstar*XiEqStar/(XiEqStar - scalar(1));
|
||||
volScalarField G = R*(XiEq - scalar(1.001))/XiEq;
|
||||
volScalarField Gstar(0.28/tauEta);
|
||||
volScalarField R(Gstar*XiEqStar/(XiEqStar - scalar(1)));
|
||||
volScalarField G(R*(XiEq - scalar(1.001))/XiEq);
|
||||
|
||||
//R *= (Gstar + 2*mag(dev(symm(fvc::grad(U)))))/Gstar;
|
||||
|
||||
|
@ -61,8 +61,10 @@
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
||||
|
||||
Info<< "Creating field Xi\n" << endl;
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
|
@ -55,5 +55,7 @@
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
@ -12,7 +12,7 @@ tmp<fv::convectionScheme<scalar> > mvConvection
|
||||
{
|
||||
|
||||
label inertIndex = -1;
|
||||
volScalarField Yt = 0.0*Y[0];
|
||||
volScalarField Yt(0.0*Y[0]);
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
|
@ -82,8 +82,10 @@ autoPtr<compressible::turbulenceModel> turbulence
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
||||
|
||||
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
|
||||
|
@ -94,11 +94,13 @@ int main(int argc, char *argv[])
|
||||
|
||||
// turbulent time scale
|
||||
{
|
||||
volScalarField tk =
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
|
||||
volScalarField tc = chemistry.tc();
|
||||
volScalarField tk
|
||||
(
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon())
|
||||
);
|
||||
volScalarField tc(chemistry.tc());
|
||||
|
||||
//Chalmers PaSR model
|
||||
// Chalmers PaSR model
|
||||
kappa = (runTime.deltaT() + tc)/(runTime.deltaT() + tc + tk);
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField A = UEqn.A();
|
||||
volScalarField A(UEqn.A());
|
||||
U = UEqn.H()/A;
|
||||
|
||||
if (transonic)
|
||||
|
@ -85,9 +85,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
// turbulent time scale
|
||||
{
|
||||
volScalarField tk =
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
|
||||
volScalarField tc = chemistry.tc();
|
||||
volScalarField tk
|
||||
(
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon())
|
||||
);
|
||||
volScalarField tc(chemistry.tc());
|
||||
|
||||
// Chalmers PaSR model
|
||||
kappa = (runTime.deltaT() + tc)/(runTime.deltaT()+tc+tk);
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
|
@ -32,7 +32,7 @@ namespace Foam
|
||||
{
|
||||
defineTypeNameAndDebug(combustionModel, 0);
|
||||
defineRunTimeSelectionTable(combustionModel, dictionary);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
@ -78,8 +78,8 @@ Foam::combustionModel::combustionModel::R(volScalarField& fu) const
|
||||
{
|
||||
const basicMultiComponentMixture& composition = thermo_.composition();
|
||||
const volScalarField& ft = composition.Y("ft");
|
||||
volScalarField fres = composition.fres(ft, stoicRatio_.value());
|
||||
volScalarField wFuelNorm = this->wFuelNorm()*pos(fu - fres);
|
||||
volScalarField fres(composition.fres(ft, stoicRatio_.value()));
|
||||
volScalarField wFuelNorm(this->wFuelNorm()*pos(fu - fres));
|
||||
|
||||
return wFuelNorm*fres - fvm::Sp(wFuelNorm, fu);
|
||||
}
|
||||
|
@ -123,8 +123,10 @@ volScalarField dQ
|
||||
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
||||
|
||||
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
// Solve fuel equation
|
||||
// ~~~~~~~~~~~~~~~~~~~
|
||||
fvScalarMatrix R = combustion->R(fu);
|
||||
fvScalarMatrix R(combustion->R(fu));
|
||||
|
||||
{
|
||||
fvScalarMatrix fuEqn
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
@ -17,7 +17,7 @@ phi = phiU - rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
surfaceScalarField rhorAUf = fvc::interpolate(rho*rAU);
|
||||
surfaceScalarField rhorAUf(fvc::interpolate(rho*rAU));
|
||||
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
|
@ -11,7 +11,7 @@ tmp<fv::convectionScheme<scalar> > mvConvection
|
||||
|
||||
{
|
||||
label inertIndex = -1;
|
||||
volScalarField Yt = 0.0*Y[0];
|
||||
volScalarField Yt(0.0*Y[0]);
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
|
@ -10,9 +10,14 @@
|
||||
// turbulent time scale
|
||||
if (turbulentReaction)
|
||||
{
|
||||
volScalarField tk =
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
|
||||
volScalarField tc = chemistry.tc();
|
||||
volScalarField tk
|
||||
(
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon())
|
||||
);
|
||||
volScalarField tc
|
||||
(
|
||||
chemistry.tc()
|
||||
);
|
||||
|
||||
// Chalmers PaSR model
|
||||
kappa = (runTime.deltaT() + tc)/(runTime.deltaT() + tc + tk);
|
||||
|
@ -72,8 +72,10 @@ autoPtr<compressible::turbulenceModel> turbulence
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
||||
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
|
@ -11,7 +11,7 @@ tmp<fv::convectionScheme<scalar> > mvConvection
|
||||
|
||||
{
|
||||
label inertIndex = -1;
|
||||
volScalarField Yt = 0.0*Y[0];
|
||||
volScalarField Yt(0.0*Y[0]);
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
|
@ -10,9 +10,11 @@
|
||||
// turbulent time scale
|
||||
if (turbulentReaction)
|
||||
{
|
||||
volScalarField tk =
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
|
||||
volScalarField tc = chemistry.tc();
|
||||
volScalarField tk
|
||||
(
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon())
|
||||
);
|
||||
volScalarField tc(chemistry.tc());
|
||||
|
||||
// Chalmers PaSR model
|
||||
kappa = (runTime.deltaT() + tc)/(runTime.deltaT() + tc + tk);
|
||||
|
@ -73,8 +73,10 @@ autoPtr<compressible::turbulenceModel> turbulence
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt =
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
volScalarField DpDt
|
||||
(
|
||||
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
|
||||
);
|
||||
|
||||
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
|
||||
|
||||
|
@ -5,14 +5,16 @@
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p;
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
surfaceScalarField phiv =
|
||||
surfaceScalarField phiv
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
phi = fvc::interpolate(rho)*phiv;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user