ENH: surfaceFeatureExtract now builds with CGAL support for curvature

extendedFeatureEdgeMesh: Add function to find all feature points within a sphere
treeDataPoint: Add support for point overlap test
This commit is contained in:
laurence 2012-03-16 11:21:43 +00:00
parent 23470c19ae
commit dbc7526abb
13 changed files with 1138 additions and 236 deletions

View File

@ -0,0 +1,33 @@
#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory
set -x
if [ ! -e "Make/files" ] || [ ! -e "Make/options" ]
then
mkdir -p Make
if [ -n "$CGAL_ARCH_PATH" ]
then
cp -r MakeWithCGAL/* Make
echo
echo Compiling surfaceFeatureExtract with CGAL support for curvature
echo
wmake
else
cp -r MakeWithoutCGAL/* Make
echo
echo Compiling surfaceFeatureExtract without CGAL support for curvature
echo
wmake
fi
else
echo surfaceFeatureExtract already has a Make folder
fi
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,228 @@
#ifndef CGAL_PSURF_RINGS_H_
#define CGAL_PSURF_RINGS_H_
// This file adapted from
// CGAL-3.7/examples/Jet_fitting_3//PolyhedralSurf_rings.h
// Licensed under CGAL-3.7/LICENSE.FREE_USE
// Copyright (c) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
// Utrecht University (The Netherlands), ETH Zurich (Switzerland), Freie
// Universitaet Berlin (Germany), INRIA Sophia-Antipolis (France),
// Martin-Luther-University Halle-Wittenberg (Germany), Max-Planck-Institute
// Saarbruecken (Germany), RISC Linz (Austria), and Tel-Aviv University
// (Israel). All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <cassert>
using namespace std;
template
<
class TPoly,
class VertexPropertyMap
>
class T_PolyhedralSurf_rings
{
protected:
// Polyhedron
typedef typename TPoly::Vertex Vertex;
typedef typename TPoly::Halfedge Halfedge;
typedef typename TPoly::Facet Facet;
typedef typename TPoly::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename TPoly::Vertex_iterator Vertex_iterator;
// vertex indices are initialised to -1
static void reset_ring_indices
(
std::vector< Vertex* >& vces,
VertexPropertyMap& vpm
);
// i >= 1; from a start vertex on the current i-1 ring, push non-visited
// neighbors of start in the nextRing and set indices to i. Also add these
// vertices in all.
static void push_neighbours_of
(
Vertex* start,
int ith,
std::vector< Vertex* >& nextRing,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm
);
// i >= 1, from a currentRing i-1, collect all neighbors, set indices
// to i and store them in nextRing and all.
static void collect_ith_ring
(
int ith,
std::vector< Vertex* >& currentRing,
std::vector< Vertex* >& nextRing,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm
);
public:
// collect i>=1 rings : all neighbours up to the ith ring,
static void collect_i_rings
(
Vertex* v,
int ring_i,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm
);
//collect enough rings (at least 1), to get at least min_nb of neighbors
static void collect_enough_rings
(
Vertex* v,
unsigned int min_nb,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm
);
};
////IMPLEMENTATION////////////////////////////////////////////////////
template < class TPoly , class VertexPropertyMap>
void T_PolyhedralSurf_rings <TPoly, VertexPropertyMap>::
push_neighbours_of(Vertex* start, int ith,
std::vector< Vertex* >& nextRing,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm)
{
Vertex *v;
Halfedge_around_vertex_circulator
hedgeb = start->vertex_begin(), hedgee = hedgeb;
CGAL_For_all(hedgeb, hedgee)
{
v = &*(hedgeb->opposite()->vertex());
if (get(vpm, v) != -1) continue; //if visited: next
put(vpm, v, ith);
nextRing.push_back(v);
all.push_back(v);
}
}
template <class TPoly, class VertexPropertyMap>
void T_PolyhedralSurf_rings <TPoly, VertexPropertyMap>::
collect_ith_ring(int ith, std::vector< Vertex* >& currentRing,
std::vector< Vertex* >& nextRing,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm)
{
typename std::vector< Vertex* >::iterator
itb = currentRing.begin(), ite = currentRing.end();
CGAL_For_all(itb, ite)
{
push_neighbours_of(*itb, ith, nextRing, all, vpm);
}
}
template <class TPoly, class VertexPropertyMap>
void T_PolyhedralSurf_rings <TPoly, VertexPropertyMap>::
reset_ring_indices(std::vector< Vertex* >& vces,
VertexPropertyMap& vpm)
{
typename std::vector< Vertex* >::iterator
itb = vces.begin(), ite = vces.end();
CGAL_For_all(itb, ite)
{
put(vpm, *itb, -1);
}
}
template <class TPoly, class VertexPropertyMap>
void T_PolyhedralSurf_rings <TPoly, VertexPropertyMap>::
collect_i_rings(Vertex* v,
int ring_i,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm)
{
std::vector<Vertex*> current_ring, next_ring;
std::vector<Vertex*> *p_current_ring, *p_next_ring;
assert(ring_i >= 1);
//initialize
p_current_ring = &current_ring;
p_next_ring = &next_ring;
put(vpm, v, 0);
current_ring.push_back(v);
all.push_back(v);
for (int i=1; i<=ring_i; i++)
{
collect_ith_ring(i, *p_current_ring, *p_next_ring, all, vpm);
//next round must be launched from p_nextRing...
p_current_ring->clear();
std::swap(p_current_ring, p_next_ring);
}
//clean up
reset_ring_indices(all, vpm);
}
template <class TPoly, class VertexPropertyMap>
void T_PolyhedralSurf_rings <TPoly, VertexPropertyMap>::
collect_enough_rings(Vertex* v,
unsigned int min_nb,
std::vector< Vertex* >& all,
VertexPropertyMap& vpm)
{
std::vector<Vertex*> current_ring, next_ring;
std::vector<Vertex*> *p_current_ring, *p_next_ring;
//initialize
p_current_ring = &current_ring;
p_next_ring = &next_ring;
put(vpm, v, 0);
current_ring.push_back(v);
all.push_back(v);
int i = 1;
while ( (all.size() < min_nb) && (p_current_ring->size() != 0) )
{
collect_ith_ring(i, *p_current_ring, *p_next_ring, all, vpm);
//next round must be launched from p_nextRing...
p_current_ring->clear();
std::swap(p_current_ring, p_next_ring);
i++;
}
//clean up
reset_ring_indices(all, vpm);
}
#endif

View File

@ -0,0 +1,89 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "buildCGALPolyhedron.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::buildCGALPolyhedron::buildCGALPolyhedron
(
const Foam::triSurface& surf
)
:
CGAL::Modifier_base<HalfedgeDS>(),
surf_(surf)
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::buildCGALPolyhedron::~buildCGALPolyhedron()
{}
// * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * * //
void Foam::buildCGALPolyhedron::operator()
(
HalfedgeDS& hds
)
{
typedef HalfedgeDS::Traits Traits;
typedef Traits::Point_3 Point;
// Postcondition: `hds' is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HalfedgeDS> B(hds, false);
B.begin_surface
(
surf_.points().size(), // n points
surf_.size(), // n facets
2*surf_.edges().size() // n halfedges
);
forAll(surf_.points(), pI)
{
const Foam::point& p = surf_.points()[pI];
B.add_vertex(Point(p.x(), p.y(), p.z()));
}
forAll(surf_, fI)
{
B.begin_facet();
B.add_vertex_to_facet(surf_[fI][0]);
B.add_vertex_to_facet(surf_[fI][1]);
B.add_vertex_to_facet(surf_[fI][2]);
B.end_facet();
}
B.end_surface();
}
// ************************************************************************* //

View File

@ -0,0 +1,106 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::buildCGALPolyhedron
Description
Convert a triSurface into a CGAL Polyhedron
SourceFiles
buildCGALPolyhedron.C
\*---------------------------------------------------------------------------*/
#ifndef buildCGALPolyhedron_H
#define buildCGALPolyhedron_H
#include "triSurface.H"
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;
typedef Polyhedron::Vertex Vertex;
typedef Polyhedron::Vertex_iterator Vertex_iterator;
typedef Kernel::Point_3 Point_3;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class buildCGALPolyhedron Declaration
\*---------------------------------------------------------------------------*/
class buildCGALPolyhedron
:
public CGAL::Modifier_base<HalfedgeDS>
{
// Private data
//- Reference to triSurface to convert
const Foam::triSurface& surf_;
// Private Member Functions
//- Disallow default bitwise copy construct
buildCGALPolyhedron(const buildCGALPolyhedron&);
//- Disallow default bitwise assignment
void operator=(const buildCGALPolyhedron&);
public:
// Constructors
//- Construct with reference to triSurface
buildCGALPolyhedron(const triSurface& surf);
//- Destructor
~buildCGALPolyhedron();
// Member Operators
//- operator() of this `modifier' called by delegate function of
// Polyhedron
void operator()(HalfedgeDS& hds);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,4 @@
surfaceFeatureExtract.C
CGALPolyhedron/buildCGALPolyhedron.C
EXE = $(FOAM_APPBIN)/surfaceFeatureExtract

View File

@ -0,0 +1,29 @@
EXE_FROUNDING_MATH = -frounding-math
EXE_NDEBUG = -DNDEBUG
USE_F2C = -DCGAL_USE_F2C
include $(GENERAL_RULES)/CGAL
EXE_INC = \
-DENABLE_CURVATURE \
${EXE_FROUNDING_MATH} \
${EXE_NDEBUG} \
${USE_F2C} \
${CGAL_INC} \
-ICGALPolyhedron \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/edgeMesh/lnInclude \
-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
$(CGAL_LIBS) \
-L$(CGAL_ARCH_PATH)/lib \
-llapack \
-lblas \
-lCGAL \
-lmeshTools \
-ledgeMesh \
-ltriSurface \
-lsampling

View File

@ -0,0 +1,3 @@
surfaceFeatureExtract.C
EXE = $(FOAM_APPBIN)/surfaceFeatureExtract

View File

@ -0,0 +1,13 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/edgeMesh/lnInclude \
-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lmeshTools \
-ledgeMesh \
-ltriSurface \
-lsampling

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -46,10 +46,263 @@ Description
#include "unitConversion.H"
#include "plane.H"
#ifdef ENABLE_CURVATURE
#include "buildCGALPolyhedron.H"
#include "CGALPolyhedronRings.H"
#include <CGAL/Monge_via_jet_fitting.h>
#include <CGAL/Lapack/Linear_algebra_lapack.h>
#include <CGAL/property_map.h>
#endif
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef ENABLE_CURVATURE
scalarField calcCurvature(const triSurface& surf)
{
scalarField k(surf.points().size(), 0);
Polyhedron P;
buildCGALPolyhedron convert(surf);
P.delegate(convert);
// Info<< "Created CGAL Polyhedron with " << label(P.size_of_vertices())
// << " vertices and " << label(P.size_of_facets())
// << " facets. " << endl;
// The rest of this function adapted from
// CGAL-3.7/examples/Jet_fitting_3/Mesh_estimation.cpp
// Licensed under CGAL-3.7/LICENSE.FREE_USE
// Copyright (c) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
// Utrecht University (The Netherlands), ETH Zurich (Switzerland), Freie
// Universitaet Berlin (Germany), INRIA Sophia-Antipolis (France),
// Martin-Luther-University Halle-Wittenberg (Germany), Max-Planck-Institute
// Saarbruecken (Germany), RISC Linz (Austria), and Tel-Aviv University
// (Israel). All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
// OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
// THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//Vertex property map, with std::map
typedef std::map<Vertex*, int> Vertex2int_map_type;
typedef boost::associative_property_map< Vertex2int_map_type >
Vertex_PM_type;
typedef T_PolyhedralSurf_rings<Polyhedron, Vertex_PM_type > Poly_rings;
typedef CGAL::Monge_via_jet_fitting<Kernel> Monge_via_jet_fitting;
typedef Monge_via_jet_fitting::Monge_form Monge_form;
std::vector<Point_3> in_points; //container for data points
// default parameter values and global variables
unsigned int d_fitting = 2;
unsigned int d_monge = 2;
unsigned int min_nb_points = (d_fitting + 1)*(d_fitting + 2)/2;
//initialize the tag of all vertices to -1
Vertex_iterator vitb = P.vertices_begin();
Vertex_iterator vite = P.vertices_end();
Vertex2int_map_type vertex2props;
Vertex_PM_type vpm(vertex2props);
CGAL_For_all(vitb, vite)
{
put(vpm, &(*vitb), -1);
}
vite = P.vertices_end();
label vertI = 0;
for (vitb = P.vertices_begin(); vitb != vite; vitb++)
{
//initialize
Vertex* v = &(*vitb);
//gather points around the vertex using rings
// From: gather_fitting_points(v, in_points, vpm);
{
std::vector<Vertex*> gathered;
in_points.clear();
Poly_rings::collect_enough_rings(v, min_nb_points, gathered, vpm);
//store the gathered points
std::vector<Vertex*>::iterator itb = gathered.begin();
std::vector<Vertex*>::iterator ite = gathered.end();
CGAL_For_all(itb, ite)
{
in_points.push_back((*itb)->point());
}
}
//skip if the nb of points is to small
if ( in_points.size() < min_nb_points )
{
std::cerr
<< "not enough pts for fitting this vertex"
<< in_points.size()
<< std::endl;
continue;
}
// perform the fitting
Monge_via_jet_fitting monge_fit;
Monge_form monge_form = monge_fit
(
in_points.begin(),
in_points.end(),
d_fitting,
d_monge
);
// std::cout<< monge_form;;
// std::cout<< "condition number : "
// << monge_fit.condition_number() << nl << std::endl;
// Use the maximum curvature to give smaller cell sizes later.
k[vertI++]
= max
(
mag(monge_form.principal_curvatures(0)),
mag(monge_form.principal_curvatures(1))
);
}
return k;
}
#endif
bool edgesConnected(const edge& e1, const edge& e2)
{
if
(
e1.start() == e2.start() || e1.start() == e2.end()
|| e1.end() == e2.start() || e1.end() == e2.end()
)
{
return true;
}
return false;
}
scalar calcProximityOfFeaturePoints
(
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
scalar curDist = mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
return minDist;
}
scalar calcProximityOfFeatureEdges
(
const extendedFeatureEdgeMesh& efem,
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
const edge& e1 = efem.edges()[pHit1.index()];
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
const edge& e2 = efem.edges()[pHit2.index()];
// Don't refine if the edges are connected to each other
if (!edgesConnected(e1, e2))
{
scalar curDist
= mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
}
return minDist;
}
void dumpBox(const treeBoundBox& bb, const fileName& fName)
{
OFstream str(fName);
@ -299,10 +552,9 @@ int main(int argc, char *argv[])
"writeVTK",
"write extendedFeatureEdgeMesh vtk files"
);
argList::addOption
argList::addBoolOption
(
"closeness",
"scalar",
"span to look for surface closeness"
);
argList::addOption
@ -331,7 +583,7 @@ int main(int argc, char *argv[])
# ifdef ENABLE_CURVATURE
argList::addBoolOption
(
"calcCurvature",
"curvature",
"calculate curvature and closeness fields"
);
# endif
@ -527,6 +779,7 @@ int main(int argc, char *argv[])
<< " will be included as feature edges."<< endl;
}
surfaceFeatures newSet(surf);
newSet.setFromStatus(edgeStat);
@ -564,7 +817,6 @@ int main(int argc, char *argv[])
feMesh.write();
// Write a featureEdgeMesh for backwards compatibility
{
featureEdgeMesh bfeMesh
@ -595,7 +847,7 @@ int main(int argc, char *argv[])
(
sFeatFileName + ".closeness",
runTime.constant(),
"extendedFeatureEdgeMesh",
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
@ -603,13 +855,6 @@ int main(int argc, char *argv[])
surf
);
if (!curvature)
{
Info<< "End\n" << endl;
return 0;
}
// Find close features
// // Dummy trim operation to mark features
@ -677,70 +922,56 @@ int main(int argc, char *argv[])
// )
// );
Info<< "Examine curvature, feature proximity and internal and "
<< "external closeness." << endl;
// Internal and external closeness
// Prepare start and end points for intersection tests
const vectorField& normals = searchSurf.faceNormals();
scalar span = searchSurf.bounds().mag();
args.optionReadIfPresent("closeness", span);
scalar externalAngleTolerance = 10;
scalar externalToleranceCosAngle = Foam::cos
(
degToRad(180 - externalAngleTolerance)
);
scalar internalAngleTolerance = 45;
scalar internalToleranceCosAngle = Foam::cos
(
degToRad(180 - internalAngleTolerance)
);
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle << nl
<< "internalToleranceCosAngle: " << internalToleranceCosAngle
<< endl;
// Info<< "span " << span << endl;
pointField start = searchSurf.faceCentres() - span*normals;
pointField end = searchSurf.faceCentres() + span*normals;
const pointField& faceCentres = searchSurf.faceCentres();
List<List<pointIndexHit> > allHitInfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitInfo);
scalarField internalCloseness(start.size(), GREAT);
scalarField externalCloseness(start.size(), GREAT);
forAll(allHitInfo, fI)
if (args.optionFound("closeness"))
{
const List<pointIndexHit>& hitInfo = allHitInfo[fI];
Info<< nl << "Extracting internal and external closeness of surface."
<< endl;
if (hitInfo.size() < 1)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// Internal and external closeness
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (hitInfo.size() == 1)
// Prepare start and end points for intersection tests
const vectorField& normals = searchSurf.faceNormals();
scalar span = searchSurf.bounds().mag();
//args.optionReadIfPresent("closeness", span);
scalar externalAngleTolerance = 10;
scalar externalToleranceCosAngle = Foam::cos
(
degToRad(180 - externalAngleTolerance)
);
scalar internalAngleTolerance = 45;
scalar internalToleranceCosAngle = Foam::cos
(
degToRad(180 - internalAngleTolerance)
);
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle << nl
<< "internalToleranceCosAngle: " << internalToleranceCosAngle
<< endl;
// Info<< "span " << span << endl;
pointField start = searchSurf.faceCentres() - span*normals;
pointField end = searchSurf.faceCentres() + span*normals;
const pointField& faceCentres = searchSurf.faceCentres();
List<List<pointIndexHit> > allHitInfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitInfo);
scalarField internalCloseness(start.size(), GREAT);
scalarField externalCloseness(start.size(), GREAT);
forAll(allHitInfo, fI)
{
if (!hitInfo[0].hit())
{
// FatalErrorIn(args.executable())
// << "findLineAll did not hit any face."
// << exit(FatalError);
}
else if (hitInfo[0].index() != fI)
const List<pointIndexHit>& hitInfo = allHitInfo[fI];
if (hitInfo.size() < 1)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
@ -748,202 +979,299 @@ int main(int argc, char *argv[])
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
}
else
{
label ownHitI = -1;
forAll(hitInfo, hI)
else if (hitInfo.size() == 1)
{
// Find the hit on the triangle that launched the ray
if (hitInfo[hI].index() == fI)
if (!hitInfo[0].hit())
{
ownHitI = hI;
break;
// FatalErrorIn(args.executable())
// << "findLineAll did not hit any face."
// << exit(FatalError);
}
}
if (ownHitI < 0)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (ownHitI == 0)
{
// There are no internal hits, the first hit is the closest
// external hit
if
(
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
else if (hitInfo[0].index() != fI)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
}
}
else if (ownHitI == hitInfo.size() - 1)
{
// There are no external hits, the last but one hit is the
// closest internal hit
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
}
else
{
if
(
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
label ownHitI = -1;
forAll(hitInfo, hI)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
// Find the hit on the triangle that launched the ray
if (hitInfo[hI].index() == fI)
{
ownHitI = hI;
break;
}
}
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
if (ownHitI < 0)
{
internalCloseness[fI] = mag
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (ownHitI == 0)
{
// There are no internal hits, the first hit is the closest
// external hit
if
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
}
}
else if (ownHitI == hitInfo.size() - 1)
{
// There are no external hits, the last but one hit is the
// closest internal hit
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
}
}
else
{
if
(
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
}
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
}
}
}
}
triSurfaceScalarField internalClosenessField
(
IOobject
(
sFeatFileName + ".internalCloseness",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
internalCloseness
);
internalClosenessField.write();
triSurfaceScalarField externalClosenessField
(
IOobject
(
sFeatFileName + ".externalCloseness",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
externalCloseness
);
externalClosenessField.write();
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalCloseness", // fieldName
internalCloseness,
false, // isNodeValues
true // verbose
);
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalCloseness", // fieldName
externalCloseness,
false, // isNodeValues
true // verbose
);
}
}
triSurfaceScalarField internalClosenessField
(
IOobject
(
sFeatFileName + ".internalCloseness",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
internalCloseness
);
internalClosenessField.write();
triSurfaceScalarField externalClosenessField
(
IOobject
(
sFeatFileName + ".externalCloseness",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
externalCloseness
);
externalClosenessField.write();
#ifdef ENABLE_CURVATURE
scalarField k = calcCurvature(surf);
// Modify the curvature values on feature edges and points to be zero.
forAll(newSet.featureEdges(), fEI)
if (args.optionFound("curvature"))
{
const edge& e = surf.edges()[newSet.featureEdges()[fEI]];
Info<< nl << "Extracting curvature of surface at the points." << endl;
k[surf.meshPoints()[e.start()]] = 0.0;
k[surf.meshPoints()[e.end()]] = 0.0;
}
scalarField k = calcCurvature(surf);
triSurfacePointScalarField kField
(
IOobject
// Modify the curvature values on feature edges and points to be zero.
// forAll(newSet.featureEdges(), fEI)
// {
// const edge& e = surf.edges()[newSet.featureEdges()[fEI]];
//
// k[surf.meshPoints()[e.start()]] = 0.0;
// k[surf.meshPoints()[e.end()]] = 0.0;
// }
triSurfacePointScalarField kField
(
sFeatFileName + ".curvature",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
k
);
IOobject
(
sFeatFileName + ".curvature",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
k
);
kField.write();
kField.write();
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"curvature", // fieldName
k,
true, // isNodeValues
true // verbose
);
}
}
#endif
if (writeVTK)
if (args.optionFound("featureProximity"))
{
vtkSurfaceWriter().write
Info<< nl << "Extracting proximity of close feature points and edges "
<< "to the surface" << endl;
const scalar searchDistance =
args.optionRead<scalar>("featureProximity");
const scalar radiusSqr = sqr(searchDistance);
scalarField featureProximity(surf.size(), searchDistance);
forAll(surf, fI)
{
const triPointRef& tri = surf[fI].tri(surf.points());
const point& triCentre = tri.circumCentre();
List<pointIndexHit> hitList;
feMesh.allNearestFeatureEdges(triCentre, radiusSqr, hitList);
featureProximity[fI] =
calcProximityOfFeatureEdges
(
feMesh,
hitList,
featureProximity[fI]
);
feMesh.allNearestFeaturePoints(triCentre, radiusSqr, hitList);
featureProximity[fI] =
calcProximityOfFeaturePoints
(
hitList,
featureProximity[fI]
);
}
triSurfaceScalarField featureProximityField
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalCloseness", // fieldName
internalCloseness,
false, // isNodeValues
true // verbose
IOobject
(
sFeatFileName + ".featureProximity",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
featureProximity
);
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalCloseness", // fieldName
externalCloseness,
false, // isNodeValues
true // verbose
);
featureProximityField.write();
# ifdef ENABLE_CURVATURE
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"curvature", // fieldName
k,
true, // isNodeValues
true // verbose
);
# endif
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"featureProximity", // fieldName
featureProximity,
false, // isNodeValues
true // verbose
);
}
}
Info<< "End\n" << endl;

View File

@ -819,6 +819,39 @@ void Foam::extendedFeatureEdgeMesh::nearestFeatureEdgeByType
}
void Foam::extendedFeatureEdgeMesh::allNearestFeaturePoints
(
const point& sample,
scalar searchRadiusSqr,
List<pointIndexHit>& info
) const
{
DynamicList<pointIndexHit> dynPointHit;
// Pick up all the feature points that intersect the search sphere
labelList elems = pointTree().findSphere
(
sample,
searchRadiusSqr
);
forAll(elems, elemI)
{
label index = elems[elemI];
label ptI = pointTree().shapes().pointLabels()[index];
const point& pt = points()[ptI];
pointIndexHit nearHit;
nearHit = pointIndexHit(true, pt, index);
dynPointHit.append(nearHit);
}
info.transfer(dynPointHit);
}
void Foam::extendedFeatureEdgeMesh::allNearestFeatureEdges
(
const point& sample,

View File

@ -283,6 +283,14 @@ public:
List<pointIndexHit>& info
) const;
//- Find all the feature points within searchDistSqr of sample
void allNearestFeaturePoints
(
const point& sample,
scalar searchRadiusSqr,
List<pointIndexHit>& info
) const;
//- Find all the feature edges within searchDistSqr of sample
void allNearestFeatureEdges
(
@ -291,6 +299,7 @@ public:
List<pointIndexHit>& info
) const;
// Access
//- Return the index of the start of the convex feature points

View File

@ -93,6 +93,25 @@ bool Foam::treeDataPoint::overlaps
}
// Check if any point on shape is inside sphere.
bool Foam::treeDataPoint::overlaps
(
const label index,
const point& centre,
const scalar radiusSqr
) const
{
label pointI = (useSubset_ ? pointLabels_[index] : index);
if (magSqr(points_[pointI] - centre) <= radiusSqr)
{
return true;
}
return false;
}
// Calculate nearest point to sample. Updates (if any) nearestDistSqr, minIndex,
// nearestPoint.
void Foam::treeDataPoint::findNearest

View File

@ -128,6 +128,14 @@ public:
const treeBoundBox& sampleBb
) const;
//- Does shape at index overlap the sphere
bool overlaps
(
const label index,
const point& centre,
const scalar radiusSqr
) const;
//- Calculates nearest (to sample) point in shape.
// Returns actual point and distance (squared)
void findNearest