DOC: DragForce: improve header file documentation
This commit is contained in:
parent
b7a1975ecd
commit
eab0a11079
@ -6,6 +6,7 @@
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2014-2017 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -30,16 +31,89 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
Drag model based on assumption of distorted spheres according to:
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid velocity)
|
||||
are dynamically computed by using \c sphereDrag model; however, are
|
||||
corrected for particle distortion by linearly varying the drag between of
|
||||
a sphere (i.e. \c sphereDrag) and a value of 1.54 corresponding to a disk.
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} =
|
||||
\frac{3}{4}
|
||||
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
|
||||
\f]
|
||||
with
|
||||
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
\mathrm{C}_{\mathrm{D, sphere}} \left( 1 + 2.632 y \right)
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{C}_\mathrm{D} | Particle drag coefficient
|
||||
\mathrm{C}_{\mathrm{D, sphere}} | Sphere drag coefficient
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\rho_p | Particle mass density
|
||||
d_p | Particle diameter
|
||||
y | Level of distortion determined by other models internally
|
||||
\endvartable
|
||||
|
||||
Constraints:
|
||||
- Applicable to particles with a spatially homogeneous distribution.
|
||||
- \f$ 1 \geq y \geq 0 \f$
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
"Effects of Drop Drag and Breakup on Fuel Sprays"
|
||||
Liu, A.B., Mather, D., Reitz, R.D.,
|
||||
SAE Paper 930072,
|
||||
SAE Transactions, Vol. 102, Section 3, Journal of Engines, 1993,
|
||||
pp. 63-95
|
||||
Standard model:
|
||||
Putnam, A. (1961).
|
||||
Integratable form of droplet drag coefficient.
|
||||
ARS Journal, 31(10), 1467-1468.
|
||||
|
||||
Standard model (tag:AOB):
|
||||
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
|
||||
KIVA-II: A computer program for chemically
|
||||
reactive flows with sprays (No. LA-11560-MS).
|
||||
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
|
||||
DOI:10.2172/6228444
|
||||
|
||||
Expression correcting drag for particle distortion (tag:LMR):
|
||||
Liu, A. B., Mather, D., & Reitz, R. D. (1993).
|
||||
Modeling the effects of drop drag
|
||||
and breakup on fuel sprays.
|
||||
SAE Transactions, 83-95.
|
||||
DOI:10.4271/930072
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
distortedSphereDrag;
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: distortedSphereDrag | word | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
See also
|
||||
- Foam::SphereDragForce
|
||||
|
||||
SourceFiles
|
||||
DistortedSphereDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#ifndef DistortedSphereDragForce_H
|
||||
|
@ -6,6 +6,7 @@
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2013-2017 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -30,7 +31,112 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
Ergun-Wen-Yu drag model for solid spheres.
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid
|
||||
velocity) are dynamically computed based on the Gidaspow drag model
|
||||
which is a switch-like combination of the Wen-Yu and Ergun drag models.
|
||||
|
||||
\f[
|
||||
\mathrm{F}_{\mathrm{D}, Wen-Yu} =
|
||||
\frac{3}{4}
|
||||
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
|
||||
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{F}_{\mathrm{D}, Ergun} =
|
||||
\left(150 \frac{1-\alpha_c}{\alpha_c} + 1.75 \mathrm{Re}_p \right)
|
||||
\frac{(1-\alpha_c) \, \mu_c}{d_p^2}
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Wen-Yu}
|
||||
\quad \mathrm{if} \quad \alpha_c \geq 0.8
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Ergun}
|
||||
\quad \mathrm{if} \quad \alpha_c < 0.8
|
||||
\f]
|
||||
with
|
||||
|
||||
\f[
|
||||
\mathrm{Re}_p =
|
||||
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{C}_\mathrm{D} | Particle drag coefficient
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
|
||||
d_p | Particle diameter
|
||||
\rho_c | Density of carrier at the cell occupying particle
|
||||
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
|
||||
\alpha_c | Volume fraction of carrier fluid
|
||||
\endvartable
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
Standard model (tag:G):
|
||||
Gidaspow, D. (1994).
|
||||
Multiphase flow and fluidization:
|
||||
continuum and kinetic theory descriptions.
|
||||
Academic press.
|
||||
|
||||
Drag-coefficient model:
|
||||
Schiller, L., & Naumann, A. (1935).
|
||||
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
|
||||
Z. Ver. Dtsch. Ing., 77: 318–326.
|
||||
|
||||
Expressions (tags:ZZB, GLSLR), (Eq.16-18, Table 3):
|
||||
Zhou, L., Zhang, L., Bai, L., Shi, W.,
|
||||
Li, W., Wang, C., & Agarwal, R. (2017).
|
||||
Experimental study and transient CFD/DEM simulation in
|
||||
a fluidized bed based on different drag models.
|
||||
RSC advances, 7(21), 12764-12774.
|
||||
DOI:10.1039/C6RA28615A
|
||||
|
||||
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
|
||||
Development and validation of an enhanced filtered drag model
|
||||
for simulating gas-solid fluidization of Geldart A particles
|
||||
in all flow regimes.
|
||||
Chemical Engineering Science, 184, 33-51.
|
||||
DOI:10.1016/j.ces.2018.03.038
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
ErgunWenYuDrag
|
||||
{
|
||||
alphac <alphacName>; // e.g. alpha.air
|
||||
}
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: ErgunWenYuDrag | word | yes | -
|
||||
alphac | Name of carrier fluid | word | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
See also
|
||||
- Foam::WenYuDragForce
|
||||
|
||||
SourceFiles
|
||||
ErgunWenYuDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
@ -6,6 +6,7 @@
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -30,35 +31,114 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
Drag model for non-spherical particles.
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid
|
||||
velocity) are dynamically computed based on empirical expressions using
|
||||
a four-parameter general drag correlation for non-spherical particles.
|
||||
|
||||
Takes the form of
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} =
|
||||
\frac{3}{4}
|
||||
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
|
||||
\f]
|
||||
with
|
||||
|
||||
24.0/Re*(1.0 + a_*pow(Re, b_)) + Re*c_/(Re + d_);
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
\frac{24}{\mathrm{Re}_p} \left( 1 + A \, \mathrm{Re}_p^B \right)
|
||||
+ \frac{C \, \mathrm{Re}_p}{D + \mathrm{Re}_p}
|
||||
\f]
|
||||
where
|
||||
|
||||
Where a(phi), b(phi), c(phi) and d(phi) are model coefficients, with phi
|
||||
defined as:
|
||||
\f[
|
||||
A = \exp(2.3288 - 6.4581\phi + 2.4486 \phi^2)
|
||||
\f]
|
||||
|
||||
area of sphere with same volume as particle
|
||||
phi = -------------------------------------------
|
||||
actual particle area
|
||||
\f[
|
||||
B = 0.0964 + 0.5565\phi
|
||||
\f]
|
||||
|
||||
Equation used is Eqn (11) of reference below - good to within 2 to 4 % of
|
||||
RMS values from experiment.
|
||||
\f[
|
||||
C = \exp(4.9050 - 13.8944\phi + 18.4222\phi^2 - 10.2599 \phi^3)
|
||||
\f]
|
||||
|
||||
H and L also give a simplified model with greater error compared to
|
||||
results from experiment - Eqn 12 - but since phi is presumed
|
||||
constant, it offers little benefit.
|
||||
\f[
|
||||
D = \exp(1.4681 + 12.2584\phi - 20.7322\phi^2 + 15.8855\phi^3)
|
||||
\f]
|
||||
|
||||
Reference:
|
||||
\f[
|
||||
\phi = \frac{A_p}{A_a}
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{Re}_p =
|
||||
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{C}_\mathrm{D} | Particle drag coefficient
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\rho_p | Particle mass density
|
||||
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
|
||||
d_p | Particle diameter
|
||||
\rho_c | Density of carrier at the cell occupying particle
|
||||
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
|
||||
A_p | Surface area of sphere with the same volume as the particle
|
||||
A_a | Actual surface area of the particle
|
||||
\phi | Ratio of surface areas
|
||||
\endvartable
|
||||
|
||||
Constraints:
|
||||
- Applicable to particles with a spatially homogeneous distribution.
|
||||
- \f$ 1 \geq \phi > 0 \f$
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
"Drag coefficient and terminal velocity of spherical and nonspherical
|
||||
particles"
|
||||
A. Haider and O. Levenspiel,
|
||||
Powder Technology
|
||||
Volume 58, Issue 1, May 1989, Pages 63-70
|
||||
Standard model (tag:HL), (Eq. 4,10-11):
|
||||
Haider, A., & Levenspiel, O. (1989).
|
||||
Drag coefficient and terminal velocity of
|
||||
spherical and nonspherical particles.
|
||||
Powder technology, 58(1), 63-70.
|
||||
DOI:10.1016/0032-5910(89)80008-7
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
nonSphereDrag
|
||||
{
|
||||
phi <phi>;
|
||||
}
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: nonSphereDrag | word | yes | -
|
||||
phi | Ratio of surface area of sphere having same <!--
|
||||
--> volume as particle to actual surface area of <!--
|
||||
--> particle | scalar | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- The drag coefficient model in (HL:Eq. 11) is good to within
|
||||
2 to 4 \% of RMS values from the corresponding experiment.
|
||||
- (HL:Eq. 12) also give a simplified model with greater error
|
||||
compared to results from the experiment, but since \c phi is
|
||||
presumed constant, Eq. 12 offers little benefit.
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
SourceFiles
|
||||
NonSphereDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
@ -31,7 +31,86 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
PlessisMasliyahDragForce drag model for solid spheres.
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid
|
||||
velocity) are dynamically computed based on the Du Plessis-Masliyah
|
||||
drag model.
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} =
|
||||
\left(\mathrm{A}\, (1-\alpha_c) + \mathrm{B}\, \mathrm{Re}\right)
|
||||
\frac{(1-\alpha_c)\, \mu_c}{\alpha_c^2\, d_p^2}
|
||||
\f]
|
||||
with
|
||||
|
||||
\f[
|
||||
A = \frac{26.8\, \alpha_c^2}
|
||||
{
|
||||
\alpha_p^{2/3}
|
||||
(1 - \alpha_p^{1/3})
|
||||
(1 - \alpha_p^{2/3})
|
||||
}
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{B} = \frac{\alpha_c^2}{\left( 1 - \alpha_p^{2/3} \right)^2}
|
||||
\f]
|
||||
|
||||
\f[
|
||||
\mathrm{Re}_p =
|
||||
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
|
||||
d_p | Particle diameter
|
||||
\rho_c | Density of carrier at the cell occupying particle
|
||||
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
|
||||
\alpha_c | Volume fraction of carrier fluid
|
||||
\alpha_p | Volume fraction of particles
|
||||
\endvartable
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
Standard model (tag:P), (Eq. 34-36):
|
||||
Du Plessis, J. P. (1994).
|
||||
Analytical quantification of coefficients in the
|
||||
Ergun equation for fluid friction in a packed bed.
|
||||
Transport in porous media, 16(2), 189-207.
|
||||
DOI:10.1007/BF00617551
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
PlessisMasliyahDrag
|
||||
{
|
||||
alphac <alphacName>; // e.g. alpha.air
|
||||
}
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: PlessisMasliyahDrag | word | yes | -
|
||||
alphac | Name of carrier fluid | word | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
SourceFiles
|
||||
PlessisMasliyahDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
@ -6,6 +6,7 @@
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -30,7 +31,89 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
Drag model based on assumption of solid spheres
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid
|
||||
velocity) are dynamically computed based on empirical expressions.
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} =
|
||||
\frac{3}{4}
|
||||
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
|
||||
\f]
|
||||
with
|
||||
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
\frac{24}{\mathrm{Re}_p}
|
||||
\left(1 + \frac{1}{6}\mathrm{Re}_p^{2/3} \right)
|
||||
\quad \mathrm{if} \quad \mathrm{Re}_p \leq 1000
|
||||
\f]
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
0.424 \quad \mathrm{if} \quad \mathrm{Re}_p > 1000
|
||||
\f]
|
||||
and
|
||||
\f[
|
||||
\mathrm{Re}_p =
|
||||
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{C}_\mathrm{D} | Particle drag coefficient
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\rho_p | Particle mass density
|
||||
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
|
||||
d_p | Particle diameter
|
||||
\rho_c | Density of carrier at the cell occupying particle
|
||||
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
|
||||
\endvartable
|
||||
|
||||
Constraints:
|
||||
- Particles remain spherical throughout the force
|
||||
computation, hence no particle distortion.
|
||||
- Applicable to particles with a spatially homogeneous distribution.
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
Standard model:
|
||||
Putnam, A. (1961).
|
||||
Integratable form of droplet drag coefficient.
|
||||
ARS Journal, 31(10), 1467-1468.
|
||||
|
||||
Expressions (tag:AOB), (Eq. 34-35):
|
||||
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
|
||||
KIVA-II: A computer program for chemically
|
||||
reactive flows with sprays (No. LA-11560-MS).
|
||||
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
|
||||
DOI:10.2172/6228444
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
sphereDrag;
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: sphereDrag | word | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
SourceFiles
|
||||
SphereDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
@ -6,6 +6,7 @@
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2013-2017 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -30,7 +31,102 @@ Group
|
||||
grpLagrangianIntermediateForceSubModels
|
||||
|
||||
Description
|
||||
Wen-Yu drag model for solid spheres.
|
||||
Particle-drag model wherein drag forces (per unit carrier-fluid
|
||||
velocity) are dynamically computed based on the Wen-Yu drag model.
|
||||
|
||||
\f[
|
||||
\mathrm{F}_\mathrm{D} =
|
||||
\frac{3}{4}
|
||||
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
|
||||
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
|
||||
\f]
|
||||
with
|
||||
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
\frac{24}{\alpha_c \, \mathrm{Re}_p}
|
||||
\left(1 + \frac{1}{6}(\alpha_c \, \mathrm{Re}_p)^{2/3} \right)
|
||||
\quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p < 1000
|
||||
\f]
|
||||
\f[
|
||||
\mathrm{C}_\mathrm{D} =
|
||||
0.44 \quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p \geq 1000
|
||||
\f]
|
||||
and
|
||||
\f[
|
||||
\mathrm{Re}_p =
|
||||
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
|
||||
\f]
|
||||
|
||||
where
|
||||
\vartable
|
||||
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
|
||||
\mathrm{C}_\mathrm{D} | Particle drag coefficient
|
||||
\mathrm{Re}_p | Particle Reynolds number
|
||||
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
|
||||
d_p | Particle diameter
|
||||
\rho_c | Density of carrier at the cell occupying particle
|
||||
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
|
||||
\alpha_c | Volume fraction of the carrier fluid
|
||||
\endvartable
|
||||
|
||||
References:
|
||||
\verbatim
|
||||
Standard model:
|
||||
Wen, C. Y., & Yu, Y. H., (1966).
|
||||
Mechanics of fluidization.
|
||||
Chem. Eng. Prog. Symp. Ser. 62, 100-111.
|
||||
|
||||
Drag-coefficient model:
|
||||
Schiller, L., & Naumann, A. (1935).
|
||||
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
|
||||
Z. Ver. Dtsch. Ing., 77: 318–326.
|
||||
|
||||
Expressions (tags:ZZB, GLSLR), (Eq.13-14, Table 3):
|
||||
Zhou, L., Zhang, L., Bai, L., Shi, W.,
|
||||
Li, W., Wang, C., & Agarwal, R. (2017).
|
||||
Experimental study and transient CFD/DEM simulation in
|
||||
a fluidized bed based on different drag models.
|
||||
RSC advances, 7(21), 12764-12774.
|
||||
DOI:10.1039/C6RA28615A
|
||||
|
||||
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
|
||||
Development and validation of an enhanced filtered drag model
|
||||
for simulating gas-solid fluidization of Geldart A particles
|
||||
in all flow regimes.
|
||||
Chemical Engineering Science, 184, 33-51.
|
||||
DOI:10.1016/j.ces.2018.03.038
|
||||
\endverbatim
|
||||
|
||||
Usage
|
||||
Minimal example by using \c constant/\<CloudProperties\>:
|
||||
\verbatim
|
||||
subModels
|
||||
{
|
||||
particleForces
|
||||
{
|
||||
WenYuDrag
|
||||
{
|
||||
alphac <alphacName>; // e.g. alpha.air
|
||||
}
|
||||
}
|
||||
}
|
||||
\endverbatim
|
||||
|
||||
where the entries mean:
|
||||
\table
|
||||
Property | Description | Type | Reqd | Deflt
|
||||
type | Type name: WenYuDrag | word | yes | -
|
||||
alphac | Name of carrier fluid | word | yes | -
|
||||
\endtable
|
||||
|
||||
Note
|
||||
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
|
||||
at the stage of a function return, so that it can later be normalised
|
||||
with the effective mass, if necessary (e.g. when using virtual-mass forces).
|
||||
|
||||
SourceFiles
|
||||
WenYuDragForce.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user