DOC: DragForce: improve header file documentation

This commit is contained in:
Kutalmis Bercin 2021-11-02 16:52:11 +00:00
parent b7a1975ecd
commit eab0a11079
6 changed files with 547 additions and 29 deletions

View File

@ -6,6 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2014-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -30,16 +31,89 @@ Group
grpLagrangianIntermediateForceSubModels
Description
Drag model based on assumption of distorted spheres according to:
Particle-drag model wherein drag forces (per unit carrier-fluid velocity)
are dynamically computed by using \c sphereDrag model; however, are
corrected for particle distortion by linearly varying the drag between of
a sphere (i.e. \c sphereDrag) and a value of 1.54 corresponding to a disk.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\mathrm{C}_{\mathrm{D, sphere}} \left( 1 + 2.632 y \right)
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{C}_{\mathrm{D, sphere}} | Sphere drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
d_p | Particle diameter
y | Level of distortion determined by other models internally
\endvartable
Constraints:
- Applicable to particles with a spatially homogeneous distribution.
- \f$ 1 \geq y \geq 0 \f$
References:
\verbatim
"Effects of Drop Drag and Breakup on Fuel Sprays"
Liu, A.B., Mather, D., Reitz, R.D.,
SAE Paper 930072,
SAE Transactions, Vol. 102, Section 3, Journal of Engines, 1993,
pp. 63-95
Standard model:
Putnam, A. (1961).
Integratable form of droplet drag coefficient.
ARS Journal, 31(10), 1467-1468.
Standard model (tag:AOB):
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
KIVA-II: A computer program for chemically
reactive flows with sprays (No. LA-11560-MS).
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
DOI:10.2172/6228444
Expression correcting drag for particle distortion (tag:LMR):
Liu, A. B., Mather, D., & Reitz, R. D. (1993).
Modeling the effects of drop drag
and breakup on fuel sprays.
SAE Transactions, 83-95.
DOI:10.4271/930072
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
distortedSphereDrag;
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: distortedSphereDrag | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
See also
- Foam::SphereDragForce
SourceFiles
DistortedSphereDragForce.C
\*---------------------------------------------------------------------------*/
#ifndef DistortedSphereDragForce_H

View File

@ -6,6 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -30,7 +31,112 @@ Group
grpLagrangianIntermediateForceSubModels
Description
Ergun-Wen-Yu drag model for solid spheres.
Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Gidaspow drag model
which is a switch-like combination of the Wen-Yu and Ergun drag models.
\f[
\mathrm{F}_{\mathrm{D}, Wen-Yu} =
\frac{3}{4}
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
\f]
\f[
\mathrm{F}_{\mathrm{D}, Ergun} =
\left(150 \frac{1-\alpha_c}{\alpha_c} + 1.75 \mathrm{Re}_p \right)
\frac{(1-\alpha_c) \, \mu_c}{d_p^2}
\f]
\f[
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Wen-Yu}
\quad \mathrm{if} \quad \alpha_c \geq 0.8
\f]
\f[
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Ergun}
\quad \mathrm{if} \quad \alpha_c < 0.8
\f]
with
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of carrier fluid
\endvartable
References:
\verbatim
Standard model (tag:G):
Gidaspow, D. (1994).
Multiphase flow and fluidization:
continuum and kinetic theory descriptions.
Academic press.
Drag-coefficient model:
Schiller, L., & Naumann, A. (1935).
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
Z. Ver. Dtsch. Ing., 77: 318326.
Expressions (tags:ZZB, GLSLR), (Eq.16-18, Table 3):
Zhou, L., Zhang, L., Bai, L., Shi, W.,
Li, W., Wang, C., & Agarwal, R. (2017).
Experimental study and transient CFD/DEM simulation in
a fluidized bed based on different drag models.
RSC advances, 7(21), 12764-12774.
DOI:10.1039/C6RA28615A
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
Development and validation of an enhanced filtered drag model
for simulating gas-solid fluidization of Geldart A particles
in all flow regimes.
Chemical Engineering Science, 184, 33-51.
DOI:10.1016/j.ces.2018.03.038
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
ErgunWenYuDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: ErgunWenYuDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
See also
- Foam::WenYuDragForce
SourceFiles
ErgunWenYuDragForce.C
\*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -30,35 +31,114 @@ Group
grpLagrangianIntermediateForceSubModels
Description
Drag model for non-spherical particles.
Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on empirical expressions using
a four-parameter general drag correlation for non-spherical particles.
Takes the form of
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
24.0/Re*(1.0 + a_*pow(Re, b_)) + Re*c_/(Re + d_);
\f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\mathrm{Re}_p} \left( 1 + A \, \mathrm{Re}_p^B \right)
+ \frac{C \, \mathrm{Re}_p}{D + \mathrm{Re}_p}
\f]
where
Where a(phi), b(phi), c(phi) and d(phi) are model coefficients, with phi
defined as:
\f[
A = \exp(2.3288 - 6.4581\phi + 2.4486 \phi^2)
\f]
area of sphere with same volume as particle
phi = -------------------------------------------
actual particle area
\f[
B = 0.0964 + 0.5565\phi
\f]
Equation used is Eqn (11) of reference below - good to within 2 to 4 % of
RMS values from experiment.
\f[
C = \exp(4.9050 - 13.8944\phi + 18.4222\phi^2 - 10.2599 \phi^3)
\f]
H and L also give a simplified model with greater error compared to
results from experiment - Eqn 12 - but since phi is presumed
constant, it offers little benefit.
\f[
D = \exp(1.4681 + 12.2584\phi - 20.7322\phi^2 + 15.8855\phi^3)
\f]
Reference:
\f[
\phi = \frac{A_p}{A_a}
\f]
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
A_p | Surface area of sphere with the same volume as the particle
A_a | Actual surface area of the particle
\phi | Ratio of surface areas
\endvartable
Constraints:
- Applicable to particles with a spatially homogeneous distribution.
- \f$ 1 \geq \phi > 0 \f$
References:
\verbatim
"Drag coefficient and terminal velocity of spherical and nonspherical
particles"
A. Haider and O. Levenspiel,
Powder Technology
Volume 58, Issue 1, May 1989, Pages 63-70
Standard model (tag:HL), (Eq. 4,10-11):
Haider, A., & Levenspiel, O. (1989).
Drag coefficient and terminal velocity of
spherical and nonspherical particles.
Powder technology, 58(1), 63-70.
DOI:10.1016/0032-5910(89)80008-7
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
nonSphereDrag
{
phi <phi>;
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: nonSphereDrag | word | yes | -
phi | Ratio of surface area of sphere having same <!--
--> volume as particle to actual surface area of <!--
--> particle | scalar | yes | -
\endtable
Note
- The drag coefficient model in (HL:Eq. 11) is good to within
2 to 4 \% of RMS values from the corresponding experiment.
- (HL:Eq. 12) also give a simplified model with greater error
compared to results from the experiment, but since \c phi is
presumed constant, Eq. 12 offers little benefit.
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
NonSphereDragForce.C
\*---------------------------------------------------------------------------*/

View File

@ -31,7 +31,86 @@ Group
grpLagrangianIntermediateForceSubModels
Description
PlessisMasliyahDragForce drag model for solid spheres.
Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Du Plessis-Masliyah
drag model.
\f[
\mathrm{F}_\mathrm{D} =
\left(\mathrm{A}\, (1-\alpha_c) + \mathrm{B}\, \mathrm{Re}\right)
\frac{(1-\alpha_c)\, \mu_c}{\alpha_c^2\, d_p^2}
\f]
with
\f[
A = \frac{26.8\, \alpha_c^2}
{
\alpha_p^{2/3}
(1 - \alpha_p^{1/3})
(1 - \alpha_p^{2/3})
}
\f]
\f[
\mathrm{B} = \frac{\alpha_c^2}{\left( 1 - \alpha_p^{2/3} \right)^2}
\f]
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of carrier fluid
\alpha_p | Volume fraction of particles
\endvartable
References:
\verbatim
Standard model (tag:P), (Eq. 34-36):
Du Plessis, J. P. (1994).
Analytical quantification of coefficients in the
Ergun equation for fluid friction in a packed bed.
Transport in porous media, 16(2), 189-207.
DOI:10.1007/BF00617551
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
PlessisMasliyahDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: PlessisMasliyahDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
PlessisMasliyahDragForce.C
\*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -30,7 +31,89 @@ Group
grpLagrangianIntermediateForceSubModels
Description
Drag model based on assumption of solid spheres
Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on empirical expressions.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\mathrm{Re}_p}
\left(1 + \frac{1}{6}\mathrm{Re}_p^{2/3} \right)
\quad \mathrm{if} \quad \mathrm{Re}_p \leq 1000
\f]
\f[
\mathrm{C}_\mathrm{D} =
0.424 \quad \mathrm{if} \quad \mathrm{Re}_p > 1000
\f]
and
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\endvartable
Constraints:
- Particles remain spherical throughout the force
computation, hence no particle distortion.
- Applicable to particles with a spatially homogeneous distribution.
References:
\verbatim
Standard model:
Putnam, A. (1961).
Integratable form of droplet drag coefficient.
ARS Journal, 31(10), 1467-1468.
Expressions (tag:AOB), (Eq. 34-35):
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
KIVA-II: A computer program for chemically
reactive flows with sprays (No. LA-11560-MS).
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
DOI:10.2172/6228444
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
sphereDrag;
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: sphereDrag | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
SphereDragForce.C
\*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -30,7 +31,102 @@ Group
grpLagrangianIntermediateForceSubModels
Description
Wen-Yu drag model for solid spheres.
Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Wen-Yu drag model.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\alpha_c \, \mathrm{Re}_p}
\left(1 + \frac{1}{6}(\alpha_c \, \mathrm{Re}_p)^{2/3} \right)
\quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p < 1000
\f]
\f[
\mathrm{C}_\mathrm{D} =
0.44 \quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p \geq 1000
\f]
and
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of the carrier fluid
\endvartable
References:
\verbatim
Standard model:
Wen, C. Y., & Yu, Y. H., (1966).
Mechanics of fluidization.
Chem. Eng. Prog. Symp. Ser. 62, 100-111.
Drag-coefficient model:
Schiller, L., & Naumann, A. (1935).
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
Z. Ver. Dtsch. Ing., 77: 318326.
Expressions (tags:ZZB, GLSLR), (Eq.13-14, Table 3):
Zhou, L., Zhang, L., Bai, L., Shi, W.,
Li, W., Wang, C., & Agarwal, R. (2017).
Experimental study and transient CFD/DEM simulation in
a fluidized bed based on different drag models.
RSC advances, 7(21), 12764-12774.
DOI:10.1039/C6RA28615A
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
Development and validation of an enhanced filtered drag model
for simulating gas-solid fluidization of Geldart A particles
in all flow regimes.
Chemical Engineering Science, 184, 33-51.
DOI:10.1016/j.ces.2018.03.038
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
WenYuDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: WenYuDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
WenYuDragForce.C
\*---------------------------------------------------------------------------*/