GIT: remove backup file
This commit is contained in:
parent
f37942b388
commit
f330921c74
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd |
|
||||
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
| Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
|
@ -1,254 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2004-2011 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
| Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
potentialFoam
|
||||
|
||||
Group
|
||||
grpBasicSolvers
|
||||
|
||||
Description
|
||||
Potential flow solver which solves for the velocity potential, to
|
||||
calculate the flux-field, from which the velocity field is obtained by
|
||||
reconstructing the flux.
|
||||
|
||||
\heading Solver details
|
||||
The potential flow solution is typically employed to generate initial fields
|
||||
for full Navier-Stokes codes. The flow is evolved using the equation:
|
||||
|
||||
\f[
|
||||
\laplacian \Phi = \div(\vec{U})
|
||||
\f]
|
||||
|
||||
Where:
|
||||
\vartable
|
||||
\Phi | Velocity potential [m2/s]
|
||||
\vec{U} | Velocity [m/s]
|
||||
\endvartable
|
||||
|
||||
The corresponding pressure field could be calculated from the divergence
|
||||
of the Euler equation:
|
||||
|
||||
\f[
|
||||
\laplacian p + \div(\div(\vec{U}\otimes\vec{U})) = 0
|
||||
\f]
|
||||
|
||||
but this generates excessive pressure variation in regions of large
|
||||
velocity gradient normal to the flow direction. A better option is to
|
||||
calculate the pressure field corresponding to velocity variation along the
|
||||
stream-lines:
|
||||
|
||||
\f[
|
||||
\laplacian p + \div(\vec{F}\cdot\div(\vec{U}\otimes\vec{U})) = 0
|
||||
\f]
|
||||
where the flow direction tensor \f$\vec{F}\f$ is obtained from
|
||||
\f[
|
||||
\vec{F} = \hat{\vec{U}}\otimes\hat{\vec{U}}
|
||||
\f]
|
||||
|
||||
\heading Required fields
|
||||
\plaintable
|
||||
U | Velocity [m/s]
|
||||
\endplaintable
|
||||
|
||||
\heading Optional fields
|
||||
\plaintable
|
||||
p | Kinematic pressure [m2/s2]
|
||||
Phi | Velocity potential [m2/s]
|
||||
| Generated from p (if present) or U if not present
|
||||
\endplaintable
|
||||
|
||||
\heading Options
|
||||
\plaintable
|
||||
-writep | write the Euler pressure
|
||||
-writePhi | Write the final velocity potential
|
||||
-initialiseUBCs | Update the velocity boundaries before solving for Phi
|
||||
\endplaintable
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "pisoControl.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
argList::addNote
|
||||
(
|
||||
"Potential flow solver which solves for the velocity potential"
|
||||
);
|
||||
|
||||
argList::addOption
|
||||
(
|
||||
"pName",
|
||||
"pName",
|
||||
"Name of the pressure field"
|
||||
);
|
||||
|
||||
argList::addBoolOption
|
||||
(
|
||||
"initialiseUBCs",
|
||||
"Initialise U boundary conditions"
|
||||
);
|
||||
|
||||
argList::addBoolOption
|
||||
(
|
||||
"writePhi",
|
||||
"Write the final velocity potential field"
|
||||
);
|
||||
|
||||
argList::addBoolOption
|
||||
(
|
||||
"writep",
|
||||
"Calculate and write the Euler pressure field"
|
||||
);
|
||||
|
||||
argList::addBoolOption
|
||||
(
|
||||
"withFunctionObjects",
|
||||
"Execute functionObjects"
|
||||
);
|
||||
|
||||
#include "addCheckCaseOptions.H"
|
||||
#include "setRootCaseLists.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
|
||||
pisoControl potentialFlow(mesh, "potentialFlow");
|
||||
|
||||
#include "createFields.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< nl << "Calculating potential flow" << endl;
|
||||
|
||||
// Since solver contains no time loop it would never execute
|
||||
// function objects so do it ourselves
|
||||
runTime.functionObjects().start();
|
||||
|
||||
MRF.makeRelative(phi);
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
// Non-orthogonal velocity potential corrector loop
|
||||
while (potentialFlow.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix PhiEqn
|
||||
(
|
||||
fvm::laplacian(dimensionedScalar("1", dimless, 1), Phi)
|
||||
==
|
||||
fvc::div(phi)
|
||||
);
|
||||
|
||||
PhiEqn.setReference(PhiRefCell, PhiRefValue);
|
||||
PhiEqn.solve();
|
||||
|
||||
if (potentialFlow.finalNonOrthogonalIter())
|
||||
{
|
||||
phi -= PhiEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
MRF.makeAbsolute(phi);
|
||||
|
||||
Info<< "Continuity error = "
|
||||
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
|
||||
<< endl;
|
||||
|
||||
U = fvc::reconstruct(phi);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
Info<< "Interpolated velocity error = "
|
||||
<< (sqrt(sum(sqr(fvc::flux(U) - phi)))/sum(mesh.magSf())).value()
|
||||
<< endl;
|
||||
|
||||
// Write U and phi
|
||||
U.write();
|
||||
phi.write();
|
||||
|
||||
// Optionally write Phi
|
||||
if (args.found("writePhi"))
|
||||
{
|
||||
Phi.write();
|
||||
}
|
||||
|
||||
// Calculate the pressure field from the Euler equation
|
||||
if (args.found("writep"))
|
||||
{
|
||||
Info<< nl << "Calculating approximate pressure field" << endl;
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
potentialFlow.dict(),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
// Calculate the flow-direction filter tensor
|
||||
volScalarField magSqrU(magSqr(U));
|
||||
volSymmTensorField F(sqr(U)/(magSqrU + SMALL*average(magSqrU)));
|
||||
|
||||
// Calculate the divergence of the flow-direction filtered div(U*U)
|
||||
// Filtering with the flow-direction generates a more reasonable
|
||||
// pressure distribution in regions of high velocity gradient in the
|
||||
// direction of the flow
|
||||
volScalarField divDivUU
|
||||
(
|
||||
fvc::div
|
||||
(
|
||||
F & fvc::div(phi, U),
|
||||
"div(div(phi,U))"
|
||||
)
|
||||
);
|
||||
|
||||
// Solve a Poisson equation for the approximate pressure
|
||||
while (potentialFlow.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(p) + divDivUU
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.solve();
|
||||
}
|
||||
|
||||
p.write();
|
||||
}
|
||||
|
||||
runTime.functionObjects().end();
|
||||
|
||||
runTime.printExecutionTime(Info);
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
Loading…
Reference in New Issue
Block a user