code style and quality improvements
renamed recon::centre to interfaceCentre.{groupName}
ranmed recon::normal to interfaceNormal.{groupName}
centre and normal field are not written by default
Within decomposeParDict, it is now possible to specify a different
decomposition method, methods coefficients or number of subdomains
for each region individually.
The top-level numberOfSubdomains remains mandatory, since this
specifies the number of domains for the entire simulation.
The individual regions may use the same number or fewer domains.
Any optional method coefficients can be specified in a general
"coeffs" entry or a method-specific one, eg "metisCoeffs".
For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
is used, and is also mandatory.
----
ENH: shortcut specification for multiLevel.
In addition to the longer dictionary form, it is also possible to
use a shorter notation for multiLevel decomposition when the same
decomposition method applies to each level.
- although this has been supported for many years, the tutorials
continued to use "convertToMeters" entry, which is specific to blockMesh.
The "scale" is more consistent with other dictionaries.
ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
consistent with use elsewhere.
Community contribution from Johan Roenby, DHI
IsoAdvector is a geometric Volume-of-Fluid method for advection of a
sharp interface between two incompressible fluids. It works on both
structured and unstructured meshes with no requirements on cell shapes.
IsoAdvector is as an alternative choice for the interface compression
treatment with the MULES limiter implemented in the interFoam family
of solvers.
The isoAdvector concept and code was developed at DHI and was funded
by a Sapere Aude postdoc grant to Johan Roenby from The Danish Council
for Independent Research | Technology and Production Sciences (Grant-ID:
DFF - 1337-00118B - FTP).
Co-funding is also provided by the GTS grant to DHI from the Danish
Agency for Science, Technology and Innovation.
The ideas behind and performance of the isoAdvector scheme is
documented in:
Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp
interface advection. R. Soc. open sci. 3: 160405.
[http://dx.doi.org/10.1098/rsos.160405](http://dx.doi.org/10.1098/rsos.160405)
Videos showing isoAdvector's performance with a number of standard
test cases can be found in this youtube channel:
https://www.youtube.com/channel/UCt6Idpv4C8TTgz1iUX0prAA
Project contributors:
* Johan Roenby <jro@dhigroup.com> (Inventor and main developer)
* Hrvoje Jasak <hrvoje.jasak@fsb.hr> (Consistent treatment of
boundary faces including processor boundaries, parallelisation,
code clean up
* Henrik Bredmose <hbre@dtu.dk> (Assisted in the conceptual
development)
* Vuko Vukcevic <vuko.vukcevic@fsb.hr> (Code review, profiling,
porting to foam-extend, bug fixing, testing)
* Tomislav Maric <tomislav@sourceflux.de> (Source file
rearrangement)
* Andy Heather <a.heather@opencfd.co.uk> (Integration into OpenFOAM
for v1706 release)
See the integration repository below to see the full set of changes
implemented for release into OpenFOAM v1706
https://develop.openfoam.com/Community/Integration-isoAdvector