The original thermoSurfaceFilm sub-models were divided between kinematicSurfaceFilm and thermoSurfaceFilm in order to use the surfaceFilm model in a kinematicCloud.
The film interaction models are now in a kinematicSurface class which can be used in a kinematic cloud adding constant thermal properties (p and T) for some sub-models, e.g. drySplashInteraction/wetSplashInteraction.
pRef and Tref were added to the kinematicSurfaceFilm as entry to the regionFilm when used with a kinematic cloud.
In the finite area surface film model Tref, pRef are stored in filmSubModelBase.
TUT: kinematicParcelFoam: new tutorial pitzDailySprinkles
1) Adding subMesh capabilities to momentumError and div FOs.
- A subMesh is created from cellZones.
- The operators (div, etc) are only calculated in the subMesh.
2) Optionally, halo cells can be added to the cellZones.
3) New helper class to handle the subMesh creation and field mapping.
- previously a function (unlike the csh version) but since bashrc and
setup have been split -> replace with inline definition
STYLE: formatting/wording for openfoam starters
TUT: simplify controlDict modification, add default substitution
ENH: accept '/' for end-of-options terminator (etc/openfoam)
- makes the application or service more apparent.
* eg. /usr/bin/openfoam / blockMesh
* vs. /usr/bin/openfoam -- blockMesh
Accept lone '-' as the end-of-options terminator, as per bash
- Adjust handling of openfoam '-c' option to flag that a command-string
will appear, but continue with option parsing.
Consistent with bash definition.
- adjust commented-out evaluation to avoid warnings.
With code like this
```
#if 0
nxin #eval{ round($nxin / 5) };
#endif
```
The handling of the "#if 0 / #endif" clause uses the plain ISstream
parser to tokenize. This means that the "round(" is parsed as a word
with a mismatched closing ')', whereas the "#eval" parser will slurp
everything in until the closing brace and send it off as a string
to the expression parser.
Wrapper that clones the supplied object for each region.
Simplifies the setup of identical post-processing requirements for
multi-region cases.
Applies the supplied function to all regions by default.
Example of function object specification:
multiRegion
{
type multiRegion;
libs (utilityFunctionObjects);
...
function
{
// Actual object specification
type fieldMinMax;
libs (fieldFunctionObjects);
fields (<field1> .. <fieldN>);
}
// Optional entries
regions (region1 region2);
}
Where the entries comprise:
Property | Description | Reqd | Default
type | Type name: multiRegion | yes |
function | Function object sub-dictionary | yes |
regions | List of region names | no | all
Computes a selected operation between multiple \c fieldValue function
objects.
The operation is applied to all results of each \c fieldValue object.
Note
Each object must generate the same number and type of results.
Usage
Minimal example by using \c system/controlDict.functions:
multiFieldValue1
{
// Mandatory entries (unmodifiable)
type multiFieldValue;
libs (fieldFunctionObjects);
// Mandatory entries (runtime modifiable)
operation subtract;
// List of fieldValue function objects as dictionaries
functions
{
region1
{
...
}
region2
{
...
}
...
regionN
{
...
}
}
// Optional (inherited) entries
...
}
where the entries mean:
Property | Description | Type | Req'd | Dflt
type | Type name: multiFieldValue | word | yes | -
libs | Library name: fieldFunctionObjects | word | yes | -
operation | Operation type to apply to values | word | yes | -
functions | List of fieldValue function objects | dict | yes | -
\endtable
Options for the \c operation entry:
add | add
subtract | subtract
min | minimum
max | maximum
average | average
Deprecated fieldValueDelta
- The fieldValueDelta function object was originally written to compute the
difference between two fieldValue-type function objects. The multiFieldValue
object name better describes its purpose whilst being able to operate on an
arbitrary number of fieldValue-type objects.
- support wordRes for selecting patch names
- ownerPolyPatch specification is now optional, which simplifies input
and also supports a faMesh spanning different patches but with a
single boundary condition.
Alternatively, can specify more granularity if required.
```
polyMeshPatches ( "top.*" );
boundary
{
inlet1
{
type patch;
ownerPolyPatch top1; // <- specific to this portion
neighbourPolyPatch inlet;
}
inlet2
{
type patch;
ownerPolyPatch top2; // <- specific to this portion
neighbourPolyPatch inlet;
}
outlet
{
type patch;
neighbourPolyPatch outflow;
}
bound
{
type symmetry;
neighbourPolyPatch bound;
}
}
```
- additional -serial/-parallel option:
prefer Allrun-serial or Allrun-parallel if available
- optional -output=DIR to preserve output
ENH: report missing tutorials/ directory in RunFunctions
code style and quality improvements
renamed recon::centre to interfaceCentre.{groupName}
ranmed recon::normal to interfaceNormal.{groupName}
centre and normal field are not written by default
- meshTools include/library for many (most) coded items
- add PatchFunction1 include for coded BCs to provide ready access
to Function1 and PatchFunction1
- adjust surfactantFoam/planeTransport tutorial to have partial
coverage of the plate by the finiteArea mesh.
Depending on the decomposition, the outflow boundary may coincide
with a processor patch (good for testing purposes).
- additional Allrun-parallel versions for targetted future behaviour