- replace typeGlobal() global function with is_globalIOobject
traits for more consistent and easier overriding.
- relocate typeFilePath() global function as a member of IOobject
for consistency with typeHeaderOk.
BUG: faSchemes, fvSchemes not marked as global file types
- caused issues with collated
- added UPstream::allGatherValues() with a direct call to MPI_Allgather.
This enables possible benefit from a variety of internal algorithms
and simplifies the caller
Old:
labelList nPerProc
(
UPstream::listGatherValues<label>(patch_.size(), myComm)
);
Pstream::broadcast(nPerProc, myComm);
New:
const labelList nPerProc
(
UPstream::allGatherValues<label>(patch_.size(), myComm)
);
- Pstream::allGatherList uses MPI_Allgather for contiguous values
instead of the hand-rolled tree walking involved with
gatherList/scatterList.
-
- simplified the calling parameters for mpiGather/mpiScatter.
Since send/recv data types are identical, the send/recv count
is also always identical. Eliminates the possibility of any
discrepancies.
Since this is a low-level call, it does not affect much code.
Currently just Foam::profilingPstream and a UPstream internal.
BUG: call to MPI_Allgather had hard-coded MPI_BYTE (not the data type)
- a latent bug since it is currently only passed char data anyhow
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
- bundles frequently used 'gather/scatter' patterns more consistently.
- combineAllGather -> combineGather + broadcast
- listCombineAllGather -> listCombineGather + broadcast
- mapCombineAllGather -> mapCombineGather + broadcast
- allGatherList -> gatherList + scatterList
- reduce -> gather + broadcast (ie, allreduce)
- The allGatherList currently wraps gatherList/scatterList, but may be
replaced with a different algorithm in the future.
STYLE: PstreamCombineReduceOps.H is mostly unneeded now
- wrap command-line retrieval of fileName with an implicit validate.
Instead of this:
fileName input(args[1]);
fileName other(args["someopt"]);
Now use this:
auto input = args.get<fileName>(1);
auto other = args.get<fileName>("someopt");
which adds a fileName::validate on the inputs
Because of how it is implemented, it will automatically also apply
to argList getOrDefault<fileName>, readIfPresent<fileName> etc.
- adjust fileName::validate and clean to handle backslash conversion.
This makes it easier to ensure that path names arising from MS-Windows
are consistently handled internally.
- dictionarySearch: now check for initial '/' directly instead of
relying on fileName isAbsolute(), which now does more things
BREAKING: remove fileName::clean() const method
- relying on const/non-const to control the behaviour (inplace change
or return a copy) is too fragile and the const version was
almost never used.
Replace:
fileName sanitized = constPath.clean();
With:
fileName sanitized(constPath);
sanitized.clean());
STYLE: test empty() instead of comparing with fileName::null
- simplifies local toggling.
- centralize fileModification static variables into IOobject.
They were previously scattered between IOobject and regIOobject
- Favour use of argList methods that are more similar to dictionary
method names with the aim of reducing the cognitive load.
* Silently deprecate two-parameter get() method in favour of the
more familiar getOrDefault.
* Silently deprecate opt() method in favour of get()
These may be verbosely deprecated in future versions.
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- centralizes IOobject handling and treatment of alternative locations.
If an alternative file location is specified, it will be used instead.
- provide decompositionMethod::canonicalName instead of using
"decomposeParDict" in various places.
General:
* -roots, -hostRoots, -fileHandler
Specific:
* -to <coordinateSystem> -from <coordinateSystem>
- Display -help-compat when compatibility or ignored options are available
STYLE: capitalization of options text
- use succincter method names that more closely resemble dictionary
and HashTable method names. This improves method name consistency
between classes and also requires less typing effort:
args.found(optName) vs. args.optionFound(optName)
args.readIfPresent(..) vs. args.optionReadIfPresent(..)
...
args.opt<scalar>(optName) vs. args.optionRead<scalar>(optName)
args.read<scalar>(index) vs. args.argRead<scalar>(index)
- the older method names forms have been retained for code compatibility,
but are now deprecated
- only occurs in combination with distributedTriSurfaceMesh in snappy.
- workaround similar to that previously used for surfaceRedistributePar
(issue #60).
Minor adjustment of incompressible motorBike tutorial to detect use of
distributedTriSurfaceMesh.
- there was a slight mix of MUST_READ and MUST_READ_IF_MODIFIED
but with no obvious code to handle runtime modified values
of the decomposition, or how this works with alternative
dictionaries.
- Cleanup/centralize handling of -decomposeParDict by relocating
common code into argList. Ensures that all processes receive
identical information about the -decomposeParDict opton.
- Only use alternative decomposeParDict for simpleFoam/motorBike
tutorial so that this will be included in the test loop for snappy.
- Added Mattijs' fix for surfaceRedistributePar.
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
(e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
for fileModificationChecking manipulation.
surfaceBooleanFeatures: use CGAL for intersection
surfaceCheck: write surface zoning as vtk file
surfaceInflate: new utility to offset surface
surfacePatch: replacement for surfaceAutoPatch. Also does cutting of surfaces.