Commit Graph

16 Commits

Author SHA1 Message Date
Andrew Heather
e3c4696a6e TUT: Updated Allrun scripts for tests. Fixes #710 2018-01-17 15:30:49 +00:00
Mark Olesen
a9ffcab5af ENH: region-wise decomposition specification for decomposeParDict
Within decomposeParDict, it is now possible to specify a different
  decomposition method, methods coefficients or number of subdomains
  for each region individually.

  The top-level numberOfSubdomains remains mandatory, since this
  specifies the number of domains for the entire simulation.
  The individual regions may use the same number or fewer domains.

  Any optional method coefficients can be specified in a general
  "coeffs" entry or a method-specific one, eg "metisCoeffs".

  For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
  is used, and is also mandatory.

----

ENH: shortcut specification for multiLevel.

  In addition to the longer dictionary form, it is also possible to
  use a shorter notation for multiLevel decomposition when the same
  decomposition method applies to each level.
2017-11-09 12:30:24 +01:00
Mark Olesen
c792a9d7df TUT: script cleanup, provide cleanCase0 for commonly used operation 2017-10-12 19:20:56 +02:00
Mark Olesen
85f5fb730f TUT: avoid backticks in scripts
- consistent versions in headers
2017-10-05 14:27:48 +02:00
Henry Weller
7da065481a tutorials/combustion/reactingFoam/RAS/SandiaD_LTS/system/decomposeParDict: removed 2017-05-08 17:03:30 +01:00
Mark Olesen
c2a0663cc7 TUT: use general 'scale' instead of 'convertToMeters' in blockMeshDict
- although this has been supported for many years, the tutorials
  continued to use "convertToMeters" entry, which is specific to blockMesh.
  The "scale" is more consistent with other dictionaries.

ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
  consistent with use elsewhere.
2017-08-03 06:38:30 +02:00
Mark Olesen
a2d8e6e4f5 STYLE: remove old references to 'dx' and 'foamFile' 2017-06-28 16:11:24 +02:00
Mark Olesen
0ea219adf5 TUT: consistent writeCompression option
- Use on/off vs longer compressed/uncompressed.
  For consistency, replaced yes/no with on/off.

- Avoid the combination of binary/compressed,
  which is disallowed and provokes a warning anyhow
2017-06-13 06:50:16 +02:00
Henry Weller
da5c5d15f7 GIT: Resolved conflict on cherry-pick 2017-05-31 10:35:05 +01:00
Andrew Heather
009f8df176 TUT: minor update 2017-05-22 13:37:51 +01:00
Andrew Heather
db5348880e MRG: resolved merge conflicts from merge from develop branch 2017-05-19 16:29:54 +01:00
Andrew Heather
91b90da4f3 Integrated Foundation code to commit 104aac5 2017-05-17 16:35:18 +01:00
Henry Weller
448561718c fvOption::radiation: New fvOption providing the radiation source to the energy equation
Radiative heat transfer may now be added to any solver in which an energy
equation is solved at run-time rather than having to change the solver code.

For example, radiative heat transfer is now enabled in the SandiaD_LTS
reactingFoam tutorial by providing a constant/fvOptions file containing

radiation
{
    type            radiation;
    libs ("libradiationModels.so");
}

and appropriate settings in the constant/radiationProperties file.
2017-04-13 14:03:58 +01:00
Andrew Heather
332c8acdcd ENH: Clean-up after latest Foundation integrations 2017-03-31 15:36:28 +01:00
Henry Weller
864fc239c8 tutorials/combustion/reactingFoam/RAS/DLR_A_LTS: Reduced the endTime 2017-03-18 17:15:58 +00:00
Henry Weller
dd15478158 combustionModels::EDC: New Eddy Dissipation Concept (EDC) turbulent combustion model
including support for TDAC and ISAT for efficient chemistry calculation.

Description
    Eddy Dissipation Concept (EDC) turbulent combustion model.

    This model considers that the reaction occurs in the regions of the flow
    where the dissipation of turbulence kinetic energy takes place (fine
    structures). The mass fraction of the fine structures and the mean residence
    time are provided by an energy cascade model.

    There are many versions and developments of the EDC model, 4 of which are
    currently supported in this implementation: v1981, v1996, v2005 and
    v2016.  The model variant is selected using the optional \c version entry in
    the \c EDCCoeffs dictionary, \eg

    \verbatim
        EDCCoeffs
        {
            version v2016;
        }
    \endverbatim

    The default version is \c v2015 if the \c version entry is not specified.

    Model versions and references:
    \verbatim
        Version v2005:

            Cgamma = 2.1377
            Ctau = 0.4083
            kappa = gammaL^exp1 / (1 - gammaL^exp2),

            where exp1 = 2, and exp2 = 2.

            Magnussen, B. F. (2005, June).
            The Eddy Dissipation Concept -
            A Bridge Between Science and Technology.
            In ECCOMAS thematic conference on computational combustion
            (pp. 21-24).

        Version v1981:

            Changes coefficients exp1 = 3 and exp2 = 3

            Magnussen, B. (1981, January).
            On the structure of turbulence and a generalized
            eddy dissipation concept for chemical reaction in turbulent flow.
            In 19th Aerospace Sciences Meeting (p. 42).

        Version v1996:

            Changes coefficients exp1 = 2 and exp2 = 3

            Gran, I. R., & Magnussen, B. F. (1996).
            A numerical study of a bluff-body stabilized diffusion flame.
            Part 2. Influence of combustion modeling and finite-rate chemistry.
            Combustion Science and Technology, 119(1-6), 191-217.

        Version v2016:

            Use local constants computed from the turbulent Da and Re numbers.

            Parente, A., Malik, M. R., Contino, F., Cuoci, A., & Dally, B. B.
            (2016).
            Extension of the Eddy Dissipation Concept for
            turbulence/chemistry interactions to MILD combustion.
            Fuel, 163, 98-111.
    \endverbatim

Tutorials cases provided: reactingFoam/RAS/DLR_A_LTS, reactingFoam/RAS/SandiaD_LTS.

This codes was developed and contributed by

    Zhiyi Li
    Alessandro Parente
    Francesco Contino
    from BURN Research Group

and updated and tested for release by

    Henry G. Weller
    CFD Direct Ltd.
2017-03-17 09:44:15 +00:00