- problems when the cloud was not available on all processors.
- NB: ensight measured data only allows a single cloud, but
foamToEnsight writes all clouds.
old "positions" file form
The change to barycentric-based tracking changed the contents of the
cloud "positions" file to a new format comprising the barycentric
co-ordinates and other cell position-based info. This broke
backwards compatibility, providing no option to restart old cases
(v1706 and earlier), and caused difficulties for dependent code, e.g.
for post-processing utilities that could only infer the contents only
after reading.
The barycentric position info is now written to a file called
"coordinates" with provision to restart old cases for which only the
"positions" file is available. Related utilities, e.g. for parallel
running and data conversion have been updated to be able to support both
file types.
To write the "positions" file by default, use set the following option
in the InfoSwitches section of the controlDict:
writeLagrangianPositions 1;
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
- erroneous double logic for subset meshes.
The underlying vtk::vtuCells uses a cellMap to map into a global
field, which also allows handling of decomposed polyhedral cells.
If a mesh subset is involved (eg, cellSet, cellZone), then the
set/zone cellMap can be used to ensure that the original number is
properly adjusted. For foamToVTK, the meshSubsetHelper already
does the subsetting and is used when loading fields.
Does not affect ParaView reader module since there we work on the
full field and do the subsetting manually (using the cellMap).
- with the xml append format it is possible to write raw binary
(instead of base64), but the writer becomes more complicated.
Either needs two passes to create, or need to allocate a block
of space for the header information (like VTK itself does) and
write later.
* internalWriter
* patchWriter
* surfaceMeshWriter
* lagrangianWriter
Also these special purpose ones:
* foamVtkWriteSurfFields
- this shifts responsibility away from caller to the individual writers
for knowing which file formats are supported and which file ending is
appropriate. When the writer receives the output format request,
it can elect to downgrade or otherwise adjust it to what it can
actually manage (eg, legacy vs xml vs xml-append).
But currently still just with legacy format backends.
- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow
- ensure that the string-related classes have consistently similar
matching methods. Use operator()(const std::string) as an entry
point for the match() method, which makes it easier to use for
filters and predicates. In some cases this will also permit using
a HashSet as a match predicate.
regExp
====
- the set method now returns a bool to signal that the requested
pattern was compiled.
wordRe
====
- have separate constructors with the compilation option (was previously
a default parameter). This leaves the single parameter constructor
explicit, but the two parameter version is now non-explicit, which
makes it easier to use when building lists.
- renamed compile-option from REGEX (to REGEXP) for consistency with
with the <regex.h>, <regex> header names etc.
wordRes
====
- renamed from wordReListMatcher -> wordRes. For reduced typing and
since it behaves as an entity only slightly related to its underlying
list nature.
- Provide old name as typedef and include for code transition.
- pass through some list methods into wordRes
hashedWordList
====
- hashedWordList[const word& name] now returns a -1 if the name is is
not found in the list of indices. That has been a pending change
ever since hashedWordList was generalized out of speciesTable
(Oct-2010).
- add operator()(const word& name) for easy use as a predicate
STYLE: adjust parameter names in stringListOps
- reflect if the parameter is being used as a primary matcher, or the
matcher will be derived from the parameter.
For example,
(const char* re), which first creates a regExp
versus (const regExp& matcher) which is used directly.
- in specific cases it can be useful to suppress searching the instances.
For example, if one only wishes to check if a "points" is available at
the given time instance, without searching backwards through all
times.
- There will be triangles rendered inside the mesh (when
surface-rendering), because one of the cell's triangles is defined
as a quadrangle in VTK_WEDGE.
- Therefore, this VTK_WEDGE representation is only used when
decomposing the mesh, otherwise the correct representation is done
by VTK_POLYHEDRON.
- Furthermore, using VTK_PYRAMID gave worse result, because it renders
2 triangles inside the mesh for the collapsed quadrangle, likely due
to mismatch with the adjacent cell's face.
- Using VTK_HEXAHEDRON was not tested in this iteration, given that it
should give even worse results, when compared to using VTK_PYRAMID.
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2099
- manifest in some parallel operations.
STYLE: update foamToEnsight, foamToEnsightParts to use C++ initializer_list
- avoid warning message when removing a non-existent directory (ensight output).
- Use ensightCase for case writing.
Rebase ensightPartCells/ensightPartFaces on
ensightCells/ensightFaces routines.
- Greatly reduces code duplication potential source of errors.