- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
For example the actuationDiskSource fvOption may now be specified
disk1
{
type actuationDiskSource;
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
rather than
disk1
{
type actuationDiskSource;
active on;
actuationDiskSourceCoeffs
{
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
}
but this form is supported for backward compatibility.
These models have been particularly designed for use in the VoF solvers, both
incompressible and compressible. Currently constant and temperature dependent
surface tension models are provided but it easy to write models in which the
surface tension is evaluated from any fields held by the mesh database.
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.
Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
Integration of ihcantabria wave models
Integration of functionality produced by The Environmental Hydraulics Institute "IHCantabria" (http://www.ihcantabria.com/en/)
- Original code introduced in commit 95e9467e
- Restructured and updated by OpenCFD into a new `waveModels` library available to the interFoam family of solvers
Main source:
`$FOAM_SRC/waveModels`
Tutorials:
`$FOAM_TUTORIALS/multiphase/interFoam/waveExample*`
Capabilities include:
- Wave generation
- Solitary wave using Boussinesq theory
- Cnoidal wave theory
- StokesI, StokesII, StokesV wave theory
- Active wave absorption at the inflow/outflow boundaries based on shallow water theory
IHCantabria Authors:
- Javier Lopez Lara (jav.lopez@unican.es)
- Gabriel Barajas (barajasg@unican.es)
- Inigo Losada (losadai@unican.es)
See merge request !88
The modes of operation are set by the dimensions of the pressure field
to which this boundary condition is applied, the \c psi entry and the value
of \c gamma:
\table
Mode | dimensions | psi | gamma
incompressible subsonic | p/rho | |
compressible subsonic | p | none |
compressible transonic | p | psi | 1
compressible supersonic | p | psi | > 1
\endtable
For most applications the totalPressure boundary condition now only
requires p0 to be specified e.g.
outlet
{
type totalPressure;
p0 uniform 1e5;
}
Added the option '-subDict' to specify a sub-dictionary if multiple
replacement sets are present in the same file. This also provides
backward compatibility by setting '-subDict dictionaryReplacement'
The use of the term 'source' in the context of post-processing is
confusing and does not properly describe the process of region
selection. The new names 'surfaceRegion' and 'volRegion' better
describe the purpose of the functionObjects which is to provide field
processing functionality limited to a specified region of space, either
a surface or volume.
The keyword 'source' is renamed 'regionType' which better describes the
purpose which is to specify the method by which the surface or volume
region is selected.
The keyword to select the name of the surface or volume region is
renamed from 'sourceName' to 'name' consistent with the other
name-changes above.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry. Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':
Property | Description | Required | Default value
U | velocity field name | no | U
phi | flux field name | no | phi
.
.
.
However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.
Property | Description | Required | Default value
pName | pressure field name | no | p
UName | velocity field name | no | U
This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance. In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.
Support for the old 'functionObjectLibs' name is supported for backward compatibility.