Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam
The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.
Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow
Evolves an electrical potential equation
\f[
\grad \left( \sigma \grad V \right)
\f]
where \f$ V \f$ is electrical potential and \f$\sigma\f$ is the
electrical current
To provide a Joule heating contribution according to:
Differential form of Joule heating - power per unit volume:
\f[
\frac{d(P)}{d(V)} = J \cdot E
\f]
where \f$ J \f$ is the current density and \f$ E \f$ the electric
field.
If no magnetic field is present:
\f[
J = \sigma E
\f]
The electric field given by
\f[
E = \grad V
\f]
Therefore:
\f[
\frac{d(P)}{d(V)} = J \cdot E
= (sigma E) \cdot E
= (sigma \grad V) \cdot \grad V
\f]
Usage
Isotropic (scalar) electrical conductivity
\verbatim
jouleHeatingSourceCoeffs
{
anisotropicElectricalConductivity no;
// Optionally specify the conductivity as a function of
// temperature
// Note: if not supplied, this will be read from the time
// directory
sigma table
(
(273 1e5)
(1000 1e5)
);
}
\endverbatim
Anisotropic (vectorial) electrical conductivity
jouleHeatingSourceCoeffs
{
anisotropicElectricalConductivity yes;
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (1 0 0);
e3 (0 0 1);
}
}
// Optionally specify sigma as a function of temperature
//sigma (31900 63800 127600);
//
//sigma table
//(
// (0 (0 0 0))
// (1000 (127600 127600 127600))
//);
}
Where:
\table
Property | Description | Required | Default
value
T | Name of temperature field | no | T
sigma | Electrical conductivity as a function of
temperature |no|
anisotropicElectricalConductivity | Anisotropic flag | yes |
\endtable
The electrical conductivity can be specified using either:
- If the \c sigma entry is present the electrical conductivity is
specified
as a function of temperature using a Function1 type
- If not present the sigma field will be read from file
- If the anisotropicElectricalConductivity flag is set to 'true',
sigma
should be specified as a vector quantity
NOTE: in Reaction.C constructors bool initReactionThermo is used by solidReaction where there is no
need of setting a lhs - rhs thermo type for each reaction. This is needed for mechanism with reversible reactions
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
Radiative heat transfer may now be added to any solver in which an energy
equation is solved at run-time rather than having to change the solver code.
For example, radiative heat transfer is now enabled in the SandiaD_LTS
reactingFoam tutorial by providing a constant/fvOptions file containing
radiation
{
type radiation;
libs ("libradiationModels.so");
}
and appropriate settings in the constant/radiationProperties file.
For example the porosity coefficients may now be specified thus:
porosity1
{
type DarcyForchheimer;
cellZone porosity;
d (5e7 -1000 -1000);
f (0 0 0);
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (0.70710678 0.70710678 0);
e2 (0 0 1);
}
}
}
rather than
porosity1
{
type DarcyForchheimer;
active yes;
cellZone porosity;
DarcyForchheimerCoeffs
{
d (5e7 -1000 -1000);
f (0 0 0);
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (0.70710678 0.70710678 0);
e2 (0 0 1);
}
}
}
}
support for which is maintained for backward compatibility.
For example the actuationDiskSource fvOption may now be specified
disk1
{
type actuationDiskSource;
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
rather than
disk1
{
type actuationDiskSource;
active on;
actuationDiskSourceCoeffs
{
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
}
but this form is supported for backward compatibility.
Main changes in the tutorial:
- General cleanup of the phaseProperties of unnecessary entries
- sensibleEnthalpy is used for both phases
- setTimeStep functionObject is used to set a sharp reduction in time step near the start of the injection
- Monitoring of pressure minimum and maximum
Patch contributed by Juho Peltola, VTT.
The standard naming convention for heat flux is "q" and this is used for the
conductive and convective heat fluxes is OpenFOAM. The use of "Qr" for
radiative heat flux is an anomaly which causes confusion, particularly for
boundary conditions in which "Q" is used to denote power in Watts. The name of
the radiative heat flux has now been corrected to "qr" and all models, boundary
conditions and tutorials updated.
Description
Temperature-dependent surface tension model in which the surface tension
function provided by the phase Foam::liquidProperties class is used.
Usage
\table
Property | Description | Required | Default value
phase | Phase name | yes |
\endtable
Example of the surface tension specification:
\verbatim
sigma
{
type liquidProperties;
phase water;
}
\endverbatim
for use with e.g. compressibleInterFoam, see
tutorials/multiphase/compressibleInterFoam/laminar/depthCharge2D
These models have been particularly designed for use in the VoF solvers, both
incompressible and compressible. Currently constant and temperature dependent
surface tension models are provided but it easy to write models in which the
surface tension is evaluated from any fields held by the mesh database.
Demonstrates meshing a cylinder with hemispehrical ends using snappyHexMesh with
a polar background mesh that uses the point and edge projection feature of blockMesh.
The case prescribes a multiMotion on the cylinder, combining an oscillatingLinearMotion
and transverse rotatingMotion.