- simplify procAddressing read/write
- avoid accessing points in faMeshReconstructor.
Can rely on the patch meshPoints (labelList), which does not need
access to a pointField
- report number of points on decomposed mesh.
Can be useful additional information.
Additional statistics for finite area decomposition
- provide bundled reconstructAllFields for various reconstructors
- remove reconstructPar checks for very old face addressing
(from foam2.0 - ie, older than OpenFOAM itself)
- bundle all reading into fieldsDistributor tools,
where it can be reused by various utilities as required.
- combine decomposition fields as respective fieldsCache
which eliminates most of the clutter from decomposePar
and similfies reuse in the future.
STYLE: remove old wordHashSet selection (deprecated in 2018)
BUG: incorrect face flip handling for faMeshReconstructor
- a latent bug which is not yet triggered since the faMesh faces are
currently only definable on boundary faces (which never flip)
- similar functionality as newMesh etc.
Relocated to finiteVolume since there are no dynamicMesh dependencies.
- use simpler procAddressing (with updated mapDistributeBase).
separated from redistributePar
- previously filtered on the existence of area fields, but with
faMesh::TryNew this is not required anymore.
STYLE: enable -verbose for various parallel utilities (consistency)
- direct construct and reset method for creating a zero-sized (dummy)
subMesh. Has no exposed faces and no parallel synchronization
required.
- core mapping (interpolate) functionality with direct handling
of subsetting in fvMeshSubset (src/finiteVolume).
Does not use dynamicMesh topology changes
- two-step subsetting as fvMeshSubsetter (src/dynamicMesh).
Does use dynamicMesh topology changes.
This is apparently only needed by the subsetMesh application itself.
DEFEATURE: remove deprecated setLargeCellSubset() method
- was deprecated JUL-2018, now removed (see issue #951)
- allows restricted evaluation to specific coupled patch types.
Code relocated/refactored from redistributePar.
STYLE: ensure use of waitRequests() also corresponds to nonBlocking
ENH: additional copy/move construct GeometricField from DimensionedField
STYLE: processorPointPatch owner()/neighbour() as per processorPolyPatch
STYLE: orientedType with bool cast operator and noexcept
- bundles frequently used 'gather/scatter' patterns more consistently.
- combineAllGather -> combineGather + broadcast
- listCombineAllGather -> listCombineGather + broadcast
- mapCombineAllGather -> mapCombineGather + broadcast
- allGatherList -> gatherList + scatterList
- reduce -> gather + broadcast (ie, allreduce)
- The allGatherList currently wraps gatherList/scatterList, but may be
replaced with a different algorithm in the future.
STYLE: PstreamCombineReduceOps.H is mostly unneeded now
- less communication than gatherList/scatterList
ENH: refine send granularity in Pstream::exchange
STYLE: ensure PstreamBuffers and defaultCommsType agree
- simpler loops for lduSchedule
- set() was silently deprecated in favour of reset() FEB-2018
since the original additional check for overwriting an existing
pointer was never used. The reset(...) name is more consistent
with unique_ptr, tmp etc.
Now emit deprecations for set().
- use direct test for autoPtr, tmp instead of valid() method.
More consistent with unique_ptr etc.
STYLE: eliminate redundant ptr() use on cloned quantities
- argList::envExecutable() static method.
This is identical to getEnv("FOAM_EXECUTABLE"), where the name of
the executable has typically been set from the argList construction.
Provides a singleton access to this value from locations that
do not have knowledge of the originating command args (argList).
This is a similar rationale as for the argList::envGlobalPath() static.
- additional argList::envRelativePath() static method.
- make -dry-run handling more central and easier to use by adding into
argList itself.
STYLE: drop handling of -srcDoc (v1706 option)
- replaced with -doc-source for 1712 and never used much anyhow
- supports redistributePar -decompose -fileHandler collated
- supports redistributePar -reconstruct
- does not support redistributePar with collated in redistribution mode
- noticed by Robin Knowles with `decomposePar -fields -copyZero`
The internals for the Foam:cp method combine the behaviour of
a regular `cp` and `cp -R` combined.
When source and target are both directories, the old implementation
created a subdirectory for the contents.
This normally fine,
ok: cp "path1/0/" to "path2/1" -> "path2/1/2"
BUT: cp "path1/0/" to "path2/0" -> "path2/0/0" !!
Now add check for the basenames first.
If they are identical, we probably meant to copy directory contents
only, without the additional subdir layer.
BUG: decomposePar -fields -copyZero copies the wrong directory
- was using the current time name (usually latest) instead of copying
the 0 directory
ENH: accept 0.orig directories as a fallback to copy if the 0 directory
is missing
- intended for the following type of use:
auto oldHandler = fileHandler(fileOperation::NewUncollated());
... do something that only works with uncollated
// Restore previous (if any)
if (oldHandler)
{
fileHandler(std::move(oldHandler));
}
ENH: make fileOperation distributed(bool) mutable
- use is "static-like" and akin to Pstream::parRun(bool),
thus allow toggling of the switch without a const_cast
Step 1.
include "addAllRegionOptions.H"
Adds the -allRegions, -regions and -region options to argList.
Step 2.
include "getAllRegionOptions.H"
Processes the options with -allRegions selecting everything
from the regionProperties.
OR use -regions to specify multiple regions (from
regionProperties), and can also contain regular expressions
OR use the -region option
Specifying a single -regions NAME (not a regular expresssion)
is the same as -region NAME and doesn't use regionProperties
Creates a `wordList regionNames`
Step 3.
Do something with the region names.
Either directly, or quite commonly with the following
include "createNamedMeshes.H"
Creates a `PtrList<fvMesh> meshes`
STYLE: add description to some central include files
- simplifies local toggling.
- centralize fileModification static variables into IOobject.
They were previously scattered between IOobject and regIOobject
- override casename, procesorCase flags to guarantee reconstructed
case to be written to the undecomposed directory
- alternative is to construct a Zero mesh on the undecomposed
runTime and add all other bits to that but that has not been
pursued
In reconstruct mode redistributePar will have
- master read undecomposed mesh
- slaves construct dummy mesh (0 faces/points etc.)
but correct patches and zones
so all processors have two valid meshes. This was
all handled inside fvMeshTools::newMesh and this
was behaving differently.
This adds a 'geometry' scheme section to the system/fvSchemes:
geometry
{
type highAspectRatio;
}
These 'fvGeometryMethod's are used to calculate
- deltaCoeffs
- nonOrthoCoeffs
etc and can even modify the basic face/cellCentres calculation.
- returns a range of `int` values that can be iterated across.
For example,
for (const int proci : Pstream::subProcs()) { ... }
instead of
for
(
int proci = Pstream::firstSlave();
proci <= Pstream::lastSlave();
++proci
)
{
...
}
- returns a range of `int` values that can be iterated across.
For example,
for (const int proci : Pstream::allProcs()) { ... }
instead of
for (label proci = 0; proci < Pstream::nProcs(); ++proci) { ... }
- with '&&' conditions, often better to check for non-null autoPtr
first (it is cheap)
- check as bool instead of valid() method for cleaner code, especially
when the wrapped item itself has a valid/empty or good.
Also when handling multiple checks.
Now
if (ptr && ptr->valid())
if (ptr1 || ptr2)
instead
if (ptr.valid() && ptr->valid())
if (ptr1.valid() || ptr2.valid())
- Favour use of argList methods that are more similar to dictionary
method names with the aim of reducing the cognitive load.
* Silently deprecate two-parameter get() method in favour of the
more familiar getOrDefault.
* Silently deprecate opt() method in favour of get()
These may be verbosely deprecated in future versions.
- when windows portable executables (.exe or .dll) files are loaded,
their dependent libraries not fully loaded. For OpenFOAM this means
that the static constructors which are responsible for populating
run-time selection tables are not triggered, and most of the run-time
selectable models will simply not be available.
Possible Solution
=================
Avoid this problem by defining an additional library symbol such as
the following:
extern "C" void libName_Load() {}
in the respective library, and tag this symbol as 'unresolved' for
the linker so that it will attempt to resolve it at run-time by
loading the known libraries until it finds it. The link line would
resemble the following:
-L/some/path -llibName -ulibName_Load
Pros:
- Allows precise control of forced library loading
Cons:
- Moderately verbose adjustment of some source files (even with macro
wrapping for the declaration).
- Adjustment of numerous Make/options files and somewhat ad hoc
in nature.
- Requires additional care when implementing future libraries and/or
applications.
- This is the solution taken by the symscape patches (Richard Smith)
Possible Solution
=================
Avoid this problem by simply force loading all linked libraries.
This is done by "scraping" the information out of the respective
Make/options file (after pre-processing) and using that to define
the library list that will be passed to Foam::dlOpen() at run-time.
Pros:
- One-time (very) minimal adjustment of the sources and wmake toolchain
- Automatically applies to future applications
Cons:
- Possibly larger memory footprint of application (since all dependent
libraries are loaded).
- Possible impact on startup time (while loading libraries)
- More sensitive to build failures. Since the options files are
read and modified based on the existence of the dependent
libraries as a preprocessor step, if the libraries are initially
unavailable for the first attempt at building the application,
the dependencies will be inaccurate for later (successful) builds.
- This is solution taken by the bluecape patches (Bruno Santos)
Adopted Solution
================
The approach taken by Bruno was adopted in a modified form since
this appears to be the most easily maintained.
Additional Notes
================
It is always possible to solve this problem by defining a corresponding
'libs (...)' entry in the case system/controlDict, which forces a dlOpen
of the listed libraries. This is obviously less than ideal for large-scale
changes, but can work to resolve an individual problem.
The peldd utility (https://github.com/gsauthof/pe-util), which is
also packaged as part of MXE could provide yet another alternative.
Like ldd it can be used to determine the library dependencies of
binaries or libraries. This information could be used to define an
additional load layer for Windows.
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)