On 64-bit systems, the system installations of boost, cgal are under
lib64/. The behaviour for a ThirdParty build is mostly lib/ but this
can also be changing.
Boost 1_62_0 and older build into 'lib/'.
CGAL-4.9 builds into 'lib64/', older versions into 'lib/'.
Future-proof things by using lib$WM_COMPILER_LIB_ARCH for boost and
cgal build rules, and forcing these as build targets in the ThirdParty
makeCGAL as well.
--
STYLE: check for boost/version.hpp, CGAL/version.h instead their directories
- Cleanup/centralize handling of -decomposeParDict by relocating
common code into argList. Ensures that all processes receive
identical information about the -decomposeParDict opton.
- Only use alternative decomposeParDict for simpleFoam/motorBike
tutorial so that this will be included in the test loop for snappy.
- Added Mattijs' fix for surfaceRedistributePar.
- Place common code under OSspecific.
By including "endian.H", either one of WM_BIG_ENDIAN or WM_LITTLE_ENDIAN
will be defined.
Provides inline 32-bit and 64-bit byte swap routines that can be
used/re-used elsewhere.
The inplace memory swaps currently used by the VTK output are left for
the moment pending further cleanup of that code.
For example, to mesh a sphere with a single block the geometry is defined in the
blockMeshDict as a searchableSurface:
geometry
{
sphere
{
type searchableSphere;
centre (0 0 0);
radius 1;
}
}
The vertices, block topology and curved edges are defined in the usual
way, for example
v 0.5773502;
mv -0.5773502;
a 0.7071067;
ma -0.7071067;
vertices
(
($mv $mv $mv)
( $v $mv $mv)
( $v $v $mv)
($mv $v $mv)
($mv $mv $v)
( $v $mv $v)
( $v $v $v)
($mv $v $v)
);
blocks
(
hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)
);
edges
(
arc 0 1 (0 $ma $ma)
arc 2 3 (0 $a $ma)
arc 6 7 (0 $a $a)
arc 4 5 (0 $ma $a)
arc 0 3 ($ma 0 $ma)
arc 1 2 ($a 0 $ma)
arc 5 6 ($a 0 $a)
arc 4 7 ($ma 0 $a)
arc 0 4 ($ma $ma 0)
arc 1 5 ($a $ma 0)
arc 2 6 ($a $a 0)
arc 3 7 ($ma $a 0)
);
which will produce a mesh in which the block edges conform to the sphere
but the faces of the block lie somewhere between the original cube and
the spherical surface which is a consequence of the edge-based
transfinite interpolation.
Now the projection of the block faces to the geometry specified above
can also be specified:
faces
(
project (0 4 7 3) sphere
project (2 6 5 1) sphere
project (1 5 4 0) sphere
project (3 7 6 2) sphere
project (0 3 2 1) sphere
project (4 5 6 7) sphere
);
which produces a mesh that actually conforms to the sphere.
See OpenFOAM-dev/tutorials/mesh/blockMesh/sphere
This functionality is experimental and will undergo further development
and generalization in the future to support more complex surfaces,
feature edge specification and extraction etc. Please get involved if
you would like to see blockMesh become a more flexible block-structured
mesher.
Henry G. Weller, CFD Direct.
blockMesh -help
Usage: blockMesh [OPTIONS]
options:
-blockTopology write block edges and centres as .obj files
-case <dir> specify alternate case directory, default is the cwd
-dict <file> specify alternative dictionary for the blockMesh description
-noFunctionObjects
do not execute functionObjects
-region <name> specify alternative mesh region
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
Block description
For a given block, the correspondence between the ordering of
vertex labels and face labels is shown below.
For vertex numbering in the sequence 0 to 7 (block, centre):
faces 0 (f0) and 1 are left and right, respectively;
faces 2 and 3 are bottom and top;
and faces 4 and 5 are front the back:
4 ---- 5
f3 |\ |\ f5
| | 7 ---- 6 \
| 0 |--- 1 | \
| \| \| f4
f2 3 ---- 2
f0 ----- f1
Using: OpenFOAM-dev (see www.OpenFOAM.org)
Build: dev-dc59c63351e7
- Allows passing of additional information (per-face zone ids) or possibly
other things, while reducing the number of arguments to pass.
- In sampledTriSurfaceMesh, preserve the region information that was
read in, passing it onwards via the UnsortedMeshSurface content.
The Nastran surface writer is currently the only writer making use
of this per-face zone information.
Passing it through as a PSHELL attribute, which should retain the
distinction for parts. (issue #204)
- use surfFaces() to return the templated list of faces.
This frees up the method 'faces()' to be used as a virtual method,
which will be needed at a later stage.
- CGAL itself includes its library dependencies, we only need to
provide the -L... option to the proper ThirdParty locations.
Should help improve general build robustness.
- instead we use the CGAL settings directly since they have the
same option of (version | system | none)
- may wish to review this again in the future.
- the checking for point-connected multiple-regions now also writes the
conflicting points to a pointSet
- with the -writeSets option it now also reconstructs & writes pointSets
In parallel the sets are reconstructed. e.g.
mpirun -np 6 checkMesh -parallel -allGeometry -allTopology -writeSets vtk
will create a postProcessing/ folder with the vtk files of the
(reconstructed) faceSets and cellSets.
Also improved analysis of disconnected regions now also checks for point
connectivity with is useful for detecting if AMI regions have duplicate
points.
Patch contributed by Mattijs Janssens
splitMeshRegions: handle flipping of faces for surface fields
subsetMesh: subset dimensionedFields
decomposePar: use run-time selection of decomposition constraints. Used to
keep cells on particular processors. See the decomposeParDict in
$FOAM_UTILITIES/parallel/decomposePar:
- preserveBaffles: keep baffle faces on same processor
- preserveFaceZones: keep faceZones owner and neighbour on same processor
- preservePatches: keep owner and neighbour on same processor. Note: not
suitable for cyclicAMI since these are not coupled on the patch level
- singleProcessorFaceSets: keep complete faceSet on a single processor
- refinementHistory: keep cells originating from a single cell on the
same processor.
decomposePar: clean up decomposition of refinement data from snappyHexMesh
reconstructPar: reconstruct refinement data (refineHexMesh, snappyHexMesh)
reconstructParMesh: reconstruct refinement data (refineHexMesh, snappyHexMesh)
redistributePar:
- corrected mapping surfaceFields
- adding processor patches in order consistent with decomposePar
argList: check that slaves are running same version as master
fvMeshSubset: move to dynamicMesh library
fvMeshDistribute:
- support for mapping dimensionedFields
- corrected mapping of surfaceFields
parallel routines: allow parallel running on single processor
Field: support for
- distributed mapping
- mapping with flipping
mapDistribute: support for flipping
AMIInterpolation: avoid constructing localPoints
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.
These new names are more consistent and logical because:
primitiveField():
primitiveFieldRef():
Provides low-level access to the Field<Type> (primitive field)
without dimension or mesh-consistency checking. This should only be
used in the low-level functions where dimensional consistency is
ensured by careful programming and computational efficiency is
paramount.
internalField():
internalFieldRef():
Provides access to the DimensionedField<Type, GeoMesh> of values on
the internal mesh-type for which the GeometricField is defined and
supports dimension and checking and mesh-consistency checking.
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().
See also commit 22f4ad32b1
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now. Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e
This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so
volScalarField::DimensionedInternalField -> volScalarField::Internal
In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions. To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
Contributed by Mattijs Janssens.
1. Any non-blocking data exchange needs to know in advance the sizes to
receive so it can size the buffer. For "halo" exchanges this is not
a problem since the sizes are known in advance but or all other data
exchanges these sizes need to be exchanged in advance.
This was previously done by having all processors send the sizes of data to
send to the master and send it back such that all processors
- had the same information
- all could work out who was sending what to where and hence what needed to
be received.
This is now changed such that we only send the size to the
destination processor (instead of to all as previously). This means
that
- the list of sizes to send is now of size nProcs v.s. nProcs*nProcs before
- we cut out the route to the master and back by using a native MPI
call
It causes a small change to the API of exchange and PstreamBuffers -
they now return the sizes of the local buffers only (a labelList) and
not the sizes of the buffers on all processors (labelListList)
2. Reversing the order of the way in which the sending is done when
scattering information from the master processor to the other
processors. This is done in a tree like fashion. Each processor has a
set of processors to receive from/ send to. When receiving it will
first receive from the processors with the least amount of
sub-processors (i.e. the ones which return first). When sending it
needs to do the opposite: start sending to the processor with the
most amount of sub-tree since this is the critical path.
Patch contributed by Bruno Santos:
- "etc/config.sh/CGAL":
- Indented the contents of the recently added if block.
- Added comment about using system versions.
- Library paths are now only added if the respective version is not "boost-system" and "cgal-system".
- "src/renumber/Allwmake":
It now relies on the previous file to get the version for
Boost (the same way as in "makeCGAL"). This is so that it will also
build "SloanRenumber" if "boost_version" is set to "boost-system".
- "applications/utilities/mesh/generation/Allwmake":
It now also relies on the script "config.sh/CGAL" to get the
version for CGAL. If "cgal_version" is set to "cgal-system", it
will now also build "foamy*Mesh" utilities and respective
libraries.
Resolves report http://www.openfoam.org/mantisbt/view.php?id=1232
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
(e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
for fileModificationChecking manipulation.
- redistributePar to have almost (complete) functionality of decomposePar+reconstructPar
- low-level distributed Field mapping
- support for mapping surfaceFields (including flipping faces)
- support for decomposing/reconstructing refinement data
ENH: checkMesh: have -writeSets option
- checkMesh has option to write faceSets or (outside of) cellSets as
sampledSurface format. It automatically reconstructs the set on the master
and writes it to the postProcessing folder (as any sampledSurface). E.g.
mpirun -np 6 checkMesh -allTopology -allGeometry -writeSets vtk -parallel
- fixed order writing of symmTensor in Ensight writers
See merge request !8
- checkMesh has option to write faceSets or (outside of) cellSets as
sampledSurface format. It automatically reconstructs the set on the master
and writes it to the postProcessing folder (as any sampledSurface). E.g.
mpirun -np 6 checkMesh -allTopology -allGeometry -writeSets vtk -parallel
- fixed order writing of symmTensor in Ensight writers
- shm: have displacementMotionSolver as alternative mesh shrinker
(instead of medialAxis).
- updated iglooWithFridges tutorial to use displacementLaplacian
- selectable interpolation from cells to points in the motion solvers
using the 'interpolation' keyword:
interpolation volPointInterpolation; // default
or
interpolation patchCorrected (lowerWall upperWall);
- wrapped up mesh shrinkers (see above) for use as a displacementMotionSolver
(i.e. the opposite of the displacementMotionSolver mesh shrinker)
1. multi-ray shooting. It now shoots rays in all the 3 coordinate directions
from the cell centre. Before it would shoot just a single ray from the
nearest point on the surface, going through the cell centre.
There is a cost overhead in that now it shoots 6 rays (+-x, +-y, +-z)
instead of just 1.
2. bleeding of refinement. It marks the cells inside a gap and walks out
the gap-size to neighbouring cells (which are just outside the gap). This
should make for a smoother refinement pattern.
The built-in explicit symplectic integrator has been replaced by a
general framework supporting run-time selectable integrators. Currently
the explicit symplectic, implicit Crank-Nicolson and implicit Newmark
methods are provided, all of which are 2nd-order in time:
Symplectic 2nd-order explicit time-integrator for 6DoF solid-body motion:
Reference:
Dullweber, A., Leimkuhler, B., & McLachlan, R. (1997).
Symplectic splitting methods for rigid body molecular dynamics.
The Journal of chemical physics, 107(15), 5840-5851.
Can only be used for explicit integration of the motion of the body,
i.e. may only be called once per time-step, no outer-correctors may be
applied. For implicit integration with outer-correctors choose either
CrankNicolson or Newmark schemes.
Example specification in dynamicMeshDict:
solver
{
type symplectic;
}
Newmark 2nd-order time-integrator for 6DoF solid-body motion:
Reference:
Newmark, N. M. (1959).
A method of computation for structural dynamics.
Journal of the Engineering Mechanics Division, 85(3), 67-94.
Example specification in dynamicMeshDict:
solver
{
type Newmark;
gamma 0.5; // Velocity integration coefficient
beta 0.25; // Position integration coefficient
}
Crank-Nicolson 2nd-order time-integrator for 6DoF solid-body motion:
The off-centering coefficients for acceleration (velocity integration) and
velocity (position/orientation integration) may be specified but default
values of 0.5 for each are used if they are not specified. With the default
off-centering this scheme is equivalent to the Newmark scheme with default
coefficients.
Example specification in dynamicMeshDict:
solver
{
type CrankNicolson;
aoc 0.5; // Acceleration off-centering coefficient
voc 0.5; // Velocity off-centering coefficient
}
Both the Newmark and Crank-Nicolson are proving more robust and reliable
than the symplectic method for solving complex coupled problems and the
tutorial cases have been updated to utilize this.
In this new framework it would be straight forward to add other methods
should the need arise.
Henry G. Weller
CFD Direct
Refinement:
-----------
// Optionally avoid patch merging - keeps hexahedral cells
// (to be used with automatic refinement/unrefinement)
//mergePatchFaces off;
// Optional multiple locationsInMesh with corresponding optional cellZone
// (automatically generates faceZones inbetween)
locationsInMesh
(
((-0.09 -0.039 -0.049) bottomAir) // cellZone bottomAir
((-0.09 0.009 -0.049) topAir) // cellZone topAir
);
// Optional faceType and patchType specification for these faceZones
faceZoneControls
{
bottomAir_to_topAir
{
faceType baffle;
}
}
/ Optional checking of 'bleeding' of mesh through a specifying a locations
// outside the mesh
locationsOutsideMesh ((0 0 0)(12.3 101.17 3.98));
// Improved refinement: refine all cells with all (or all but one) sides refined
// Improved refinement: refine all cells with opposing faces with different
// refinement level. These cells can happen on multiply curved surfaces.
// Default on, can be switched off with
//interfaceRefine false;
Snapping
--------
// Optional smoothing of points at refinement interfaces. This will reduce
// the non-orthogonality at refinement interfaces.
//nSmoothInternal $nSmoothPatch;
Layering
--------
// Layers can be added to patches or to any side of a faceZone.
// (Any faceZone internally gets represented as two patches)
// The angle to merge patch faces can be set independently of the
// featureAngle. This is especially useful for large feature angles
// Default is the same as the featureAngle.
//mergePatchFacesAngle 45;
// Optional mesh shrinking type 'displacementMotionSolver'. It uses any
// displacementMotionSolver, e.g. displacementSBRStress
// (default is the medial-axis algorithm, 'displacementMedialAxis')
//meshShrinker displacementMotionSolver;
Command-line option handling:
+ If -all specified or no refineMeshDict exists or, refine all cells
+ If -dict <file> specified refine according to <file>
+ If refineMeshDict exists refine according to refineMeshDict
When the refinement or all cells is selected apply 3D refinement for 3D
cases and 2D refinement for 2D cases.
For multi-region cases the default location of blockMeshDict is now system/<region name>
If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility