The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
The built-in explicit symplectic integrator has been replaced by a
general framework supporting run-time selectable integrators. Currently
the explicit symplectic, implicit Crank-Nicolson and implicit Newmark
methods are provided, all of which are 2nd-order in time:
Symplectic 2nd-order explicit time-integrator for 6DoF solid-body motion:
Reference:
Dullweber, A., Leimkuhler, B., & McLachlan, R. (1997).
Symplectic splitting methods for rigid body molecular dynamics.
The Journal of chemical physics, 107(15), 5840-5851.
Can only be used for explicit integration of the motion of the body,
i.e. may only be called once per time-step, no outer-correctors may be
applied. For implicit integration with outer-correctors choose either
CrankNicolson or Newmark schemes.
Example specification in dynamicMeshDict:
solver
{
type symplectic;
}
Newmark 2nd-order time-integrator for 6DoF solid-body motion:
Reference:
Newmark, N. M. (1959).
A method of computation for structural dynamics.
Journal of the Engineering Mechanics Division, 85(3), 67-94.
Example specification in dynamicMeshDict:
solver
{
type Newmark;
gamma 0.5; // Velocity integration coefficient
beta 0.25; // Position integration coefficient
}
Crank-Nicolson 2nd-order time-integrator for 6DoF solid-body motion:
The off-centering coefficients for acceleration (velocity integration) and
velocity (position/orientation integration) may be specified but default
values of 0.5 for each are used if they are not specified. With the default
off-centering this scheme is equivalent to the Newmark scheme with default
coefficients.
Example specification in dynamicMeshDict:
solver
{
type CrankNicolson;
aoc 0.5; // Acceleration off-centering coefficient
voc 0.5; // Velocity off-centering coefficient
}
Both the Newmark and Crank-Nicolson are proving more robust and reliable
than the symplectic method for solving complex coupled problems and the
tutorial cases have been updated to utilize this.
In this new framework it would be straight forward to add other methods
should the need arise.
Henry G. Weller
CFD Direct
Command-line option handling:
+ If -all specified or no refineMeshDict exists or, refine all cells
+ If -dict <file> specified refine according to <file>
+ If refineMeshDict exists refine according to refineMeshDict
When the refinement or all cells is selected apply 3D refinement for 3D
cases and 2D refinement for 2D cases.
To compile with 64bit labels set
WM_LABEL_SIZE=64
in ~/OpenFOAM/dev/prefs.sh
source ~/.bashrc
then Allwmake in OpenFOAM-dev.
This will build into for example OpenFOAM-dev/platforms/linux64ClangDPInt64Opt
If WM_LABEL_SIZE is unset or set to 32:
WM_LABEL_SIZE=32
the build would be placed into OpenFOAM-dev/platforms/linux64ClangDPInt32Opt
Thus both 32bit and 64bit label builds can coexist without problem.