The phase systems tables for multiphase solvers create conflict
between each other as they are defined in the same namespace and using
similar class names.
Therefore a special htc function object for reactingEulerSolver was
added (reactingEulerHtcModel), located under
src/phaseSystemModels/reactingEulerFoam/functionObjects/
This commit includes the following:
- Relocate solvers/reactingEulerFoam functionObjects to
src/phaseSystemModels
- Remove links for fieldFunctionObject to multiphase libs to avoid
conflicts
- New FO for htc for reactingEulerFoam called reactingEulerHtcModel
Now the thermal baffle can be extrapolated from a patch which is
coupled to the bottom patch of the solid region.
The user can set the T bc on the 'top' patch of the solid.
The new keyword is 'internal' and its default is true. Check new
tutorial for an example:
tutorials/heatTransfer/buoyantSimpleFoam/roomWithThickCeiling/
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
ENH: Several modifycations to avoid erroneuos rays to be shot
from wrong faces.
ENH: Updating tutorials and avoiding registration of the
coarse singleCellFvMesh
Adding solarLoad tutorial case simpleCarSolarPanel
ENH: Changes needed for the merge
Adding reflecting fluxes to Solar load radiation model.
Adding functionality to the boundary radiation models and new
place holder for basic wall types such as transparent, opaqueDiffusive,
opaqueReflective,etc.
Changing radiation wall models to run time selectable.
Adding multi-band capabilities to VF model and improving the set up
for using solar loads in VF and fvDOM radiation models.
- check if the first argument corresponds to an OpenFOAM value for
'true' (as per Switch).
True == 't', 'y', 'true', 'yes', 'on'. Everything else is not true.
- when the first argument is '-dict', it initializes the value
with a query via foamDictionary.
Eg,
isTrue -dict mydict -entry parallel
==> value=$(foamDictionary mydict -entry parallel -value)
isTrue $value
a missing entry is silently treated as false.
ENH: add getNumberOfPatchFaces function in RunFunctions
- simple extraction of nFaces from boundary file for given patch/region
- parallel output.
The output is now postProcessing/<name> for similar reasoning as
mentioned in #866 - better alignment with other function objects, no
collision with foamToVTK output.
- align the input parameters with those of vtkCloud so that we can
specify the ASCII precision and the padding width for the output
file names as well.
- emit TimeValue field, support file series generation
- support internal or boundary meshes, combining the result into a vtm
file.
- can restrict conversion based on zone names, enclosing volumes,
bounding box
- helps reduce clutter in the topoSetDict files.
Caveats when using this.
The older specification styles using "name" will conflict with the
set name. Eg,
{
name f0
type faceSet;
action add;
source patchToFace;
sourceInfo
{
name inlet;
}
}
would flattened to the following
{
name f0
type faceSet;
action add;
source patchToFace;
name inlet;
}
which overwrites the "name" used for the faceSet.
The solution is to use the updated syntax:
{
name f0
type faceSet;
action add;
source patchToFace;
patch inlet;
}
- old 'DELETE' enum was easily confused with 'REMOVE', which removes
the set, not the elements from the set.
- provide corresponding subtractSet() method
STYLE: HashSet set/unset instead of insert/erase methods in topoSetSource
- simplifies switching to/from bitSet storage
Previously the coordinate system functionality was split between
coordinateSystem and coordinateRotation. The coordinateRotation stored
the rotation tensor and handled all tensor transformations.
The functionality has now been revised and consolidated into the
coordinateSystem classes. The sole purpose of coordinateRotation
is now just to provide a selectable mechanism of how to define the
rotation tensor (eg, axis-angle, euler angles, local axes) for user
input, but after providing the appropriate rotation tensor it has
no further influence on the transformations.
--
The coordinateSystem class now contains an origin and a base rotation
tensor directly and various transformation methods.
- The origin represents the "shift" for a local coordinate system.
- The base rotation tensor represents the "tilt" or orientation
of the local coordinate system in general (eg, for mapping
positions), but may require position-dependent tensors when
transforming vectors and tensors.
For some coordinate systems (currently the cylindrical coordinate system),
the rotation tensor required for rotating a vector or tensor is
position-dependent.
The new coordinateSystem and its derivates (cartesian, cylindrical,
indirect) now provide a uniform() method to define if the rotation
tensor is position dependent/independent.
The coordinateSystem transform and invTransform methods are now
available in two-parameter forms for obtaining position-dependent
rotation tensors. Eg,
... = cs.transform(globalPt, someVector);
In some cases it can be useful to use query uniform() to avoid
storage of redundant values.
if (cs.uniform())
{
vector xx = cs.transform(someVector);
}
else
{
List<vector> xx = cs.transform(manyPoints, someVector);
}
Support transform/invTransform for common data types:
(scalar, vector, sphericalTensor, symmTensor, tensor).
====================
Breaking Changes
====================
- These changes to coordinate systems and rotations may represent
a breaking change for existing user coding.
- Relocating the rotation tensor into coordinateSystem itself means
that the coordinate system 'R()' method now returns the rotation
directly instead of the coordinateRotation. The method name 'R()'
was chosen for consistency with other low-level entities (eg,
quaternion).
The following changes will be needed in coding:
Old: tensor rot = cs.R().R();
New: tensor rot = cs.R();
Old: cs.R().transform(...);
New: cs.transform(...);
Accessing the runTime selectable coordinateRotation
has moved to the rotation() method:
Old: Info<< "Rotation input: " << cs.R() << nl;
New: Info<< "Rotation input: " << cs.rotation() << nl;
- Naming consistency changes may also cause code to break.
Old: transformVector()
New: transformPrincipal()
The old method name transformTensor() now simply becomes transform().
====================
New methods
====================
For operations requiring caching of the coordinate rotations, the
'R()' method can be used with multiple input points:
tensorField rots(cs.R(somePoints));
and later
Foam::transformList(rots, someVectors);
The rotation() method can also be used to change the rotation tensor
via a new coordinateRotation definition (issue #879).
The new methods transformPoint/invTransformPoint provide
transformations with an origin offset using Cartesian for both local
and global points. These can be used to determine the local position
based on the origin/rotation without interpreting it as a r-theta-z
value, for example.
================
Input format
================
- Streamline dictionary input requirements
* The default type is cartesian.
* The default rotation type is the commonly used axes rotation
specification (with e1/e2/3), which is assumed if the 'rotation'
sub-dictionary does not exist.
Example,
Compact specification:
coordinateSystem
{
origin (0 0 0);
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
Full specification (also accepts the longer 'coordinateRotation'
sub-dictionary name):
coordinateSystem
{
type cartesian;
origin (0 0 0);
rotation
{
type axes;
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
}
This simplifies the input for many cases.
- Additional rotation specification 'none' (an identity rotation):
coordinateSystem
{
origin (0 0 0);
rotation { type none; }
}
- Additional rotation specification 'axisAngle', which is similar
to the -rotate-angle option for transforming points (issue #660).
For some cases this can be more intuitive.
For example,
rotation
{
type axisAngle;
axis (0 1 0);
angle 30;
}
vs.
rotation
{
type axes;
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
- shorter names (or older longer names) for the coordinate rotation
specification.
euler EulerRotation
starcd STARCDRotation
axes axesRotation
================
Coding Style
================
- use Foam::coordSystem namespace for categories of coordinate systems
(cartesian, cylindrical, indirect). This reduces potential name
clashes and makes a clearer declaration. Eg,
coordSystem::cartesian csys_;
The older names (eg, cartesianCS, etc) remain available via typedefs.
- added coordinateRotations namespace for better organization and
reduce potential name clashes.
- improve doxygen entries for searchable surfaces.
- support selection of searchable surfaces with shorter names.
Eg,
type box | cylinder | ...;
vs type searchableBox | searchableCylinder | ...;
chtMultiRegionFoam now supports reaction/combustion modelling in fluid
regions in the same way as reactingFoam.
TUT: chtMultiRegionFoam: Added reverseBurner tutorial
This tutorial demonstrates chtMultiRegionFoam's combustion capability
Support the following expansions when they occur at the start of a
string:
Short-form Equivalent
========= ===========
<etc>/ ~OpenFOAM/ (as per foamEtcFile)
<case>/ $FOAM_CASE/
<constant>/ $FOAM_CASE/constant/
<system>/ $FOAM_CASE/system/
These can be used in fileName expansions to improve clarity and reduce
some typing
"<constant>/reactions" vs "$FOAM_CASE/constant/reactions"
- list all regions from constant/regionProperties:
* foamListRegions
- list specific region type from constant/regionProperties:
* foamListRegions fluid
* foamListRegions solid
Within decomposeParDict, it is now possible to specify a different
decomposition method, methods coefficients or number of subdomains
for each region individually.
The top-level numberOfSubdomains remains mandatory, since this
specifies the number of domains for the entire simulation.
The individual regions may use the same number or fewer domains.
Any optional method coefficients can be specified in a general
"coeffs" entry or a method-specific one, eg "metisCoeffs".
For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
is used, and is also mandatory.
----
ENH: shortcut specification for multiLevel.
In addition to the longer dictionary form, it is also possible to
use a shorter notation for multiLevel decomposition when the same
decomposition method applies to each level.
- Instead of relying on #inputMode to effect a global change it is now
possible (and recommended) to a temporary change in the inputMode
for the following entry.
#default : provide default value if entry is not already defined
#overwrite : silently remove a previously existing entry
#warn : warn about duplicate entries
#error : error if any duplicate entries occur
#merge : merge sub-dictionaries when possible (the default mode)
This is generally less cumbersome than the switching the global
inputMode. For example to provide a set of fallback values.
#includeIfPresent "user-files"
...
#default value uniform 10;
vs.
#includeIfPresent "user-files"
#inputMode protect
...
value uniform 10;
#inputMode merge // _Assuming_ we actually had this before
These directives can also be used to suppress the normal dictionary
merge semantics:
#overwrite dict { entry val; ... }
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
- although this has been supported for many years, the tutorials
continued to use "convertToMeters" entry, which is specific to blockMesh.
The "scale" is more consistent with other dictionaries.
ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
consistent with use elsewhere.