The boundary conditions of HbyA are now constrained by the new "constrainHbyA"
function which applies the velocity boundary values for patches for which the
velocity cannot be modified by assignment and pressure extrapolation is
not specified via the new
"fixedFluxExtrapolatedPressureFvPatchScalarField".
The new function "constrainPressure" sets the pressure gradient
appropriately for "fixedFluxPressureFvPatchScalarField" and
"fixedFluxExtrapolatedPressureFvPatchScalarField" boundary conditions to
ensure the evaluated flux corresponds to the known velocity values at
the boundary.
The "fixedFluxPressureFvPatchScalarField" boundary condition operates
exactly as before, ensuring the correct flux at fixed-flux boundaries by
compensating for the body forces (gravity in particular) with the
pressure gradient.
The new "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary
condition may be used for cases with or without body-forces to set the
pressure gradient to compensate not only for the body-force but also the
extrapolated "HbyA" which provides a second-order boundary condition for
pressure. This is useful for a range a problems including impinging
flow, extrapolated inlet conditions with body-forces or for highly
viscous flows, pressure-induced separation etc. To test this boundary
condition at walls in the motorBike tutorial case set
lowerWall
{
type fixedFluxExtrapolatedPressure;
}
motorBikeGroup
{
type fixedFluxExtrapolatedPressure;
}
Currently the new extrapolated pressure boundary condition is supported
for all incompressible and sub-sonic compressible solvers except those
providing implicit and tensorial porosity support. The approach will be
extended to cover these solvers and options in the future.
Note: the extrapolated pressure boundary condition is experimental and
requires further testing to assess the range of applicability,
stability, accuracy etc.
Henry G. Weller
CFD Direct Ltd.
Allows the specification of a reference height, for example the height
of the free-surface in a VoF simulation, which reduces the range of p_rgh.
hRef is a uniformDimensionedScalarField specified via the constant/hRef
file, equivalent to the way in which g is specified, so that it can be
looked-up from the database. For example see the constant/hRef file in
the DTCHull LTSInterFoam and interDyMFoam cases.
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller