Commit Graph

7 Commits

Author SHA1 Message Date
Henry Weller
360604b104 twoPhaseEulerFoam: Minor reorganization 2015-06-12 09:42:19 +01:00
Henry
61e52b2cb4 twoPhaseEulerFoam: Move the residualAlpha used for drag into the phaseModel
This is necessary to guarantee consistency between the residualAlpha
used for drag and buoyancy in a multi-phase system
2015-06-07 18:55:24 +01:00
Henry
38171e0c7a MRFZone: rationalize to allow support for general frame acceleration 2015-05-29 15:31:53 +01:00
Henry
18641f0649 twoPhaseEulerFoam: rationalize handling of fixed-flux BC update 2015-05-09 23:45:15 +01:00
Henry
6b2fb4664c twoPhaseEulerFoam: Update only the fixed-value phi patch fields before constructing the pressure eqn
Avoids small continuity error in parallel
2015-05-08 09:51:36 +01:00
Henry
9655398064 twoPhaseEulerFoam: Improvements to implicitPhasePressure 2015-04-28 18:18:34 +01:00
Henry
fc6b44ee3c twoPhaseEulerFoam: Added experimental face-based momentum equation formulation
This formulation provides C-grid like pressure-flux staggering on an
unstructured mesh which is hugely beneficial for Euler-Euler multiphase
equations as it allows for all forces to be treated in a consistent
manner on the cell-faces which provides better balance, stability and
accuracy.  However, to achieve face-force consistency the momentum
transport terms must be interpolated to the faces reducing accuracy of
this part of the system but this is offset by the increase in accuracy
of the force-balance.

Currently it is not clear if this face-based momentum equation
formulation is preferable for all Euler-Euler simulations so I have
included it on a switch to allow evaluation and comparison with the
previous cell-based formulation.  To try the new algorithm simply switch
it on, e.g.:

PIMPLE
{
    nOuterCorrectors 3;
    nCorrectors      1;
    nNonOrthogonalCorrectors 0;
    faceMomentum     yes;
}

It is proving particularly good for bubbly flows, eliminating the
staggering patterns often seen in the air velocity field with the
previous algorithm, removing other spurious numerical artifacts in the
velocity fields and improving stability and allowing larger time-steps
For particle-gas flows the advantage is noticeable but not nearly as
pronounced as in the bubbly flow cases.

Please test the new algorithm on your cases and provide feedback.

Henry G. Weller
CFD Direct
2015-04-27 21:33:58 +01:00