Wrapper that clones the supplied object for each region.
Simplifies the setup of identical post-processing requirements for
multi-region cases.
Applies the supplied function to all regions by default.
Example of function object specification:
multiRegion
{
type multiRegion;
libs (utilityFunctionObjects);
...
function
{
// Actual object specification
type fieldMinMax;
libs (fieldFunctionObjects);
fields (<field1> .. <fieldN>);
}
// Optional entries
regions (region1 region2);
}
Where the entries comprise:
Property | Description | Reqd | Default
type | Type name: multiRegion | yes |
function | Function object sub-dictionary | yes |
regions | List of region names | no | all
- override casename, procesorCase flags to guarantee reconstructed
case to be written to the undecomposed directory
- alternative is to construct a Zero mesh on the undecomposed
runTime and add all other bits to that but that has not been
pursued
Member function dKcdTbyKc in thermo.H is calculated from S and G at Pstd.
Thus dGdT was removed from the thermos.
- Add optional hRef, eRef and Tref as optional.
- Use new thermo to multiphase solver icoReactingMuliPhaseFoam
- Remove hRefConst and eRefConst thermos.
TUT: Updated tutorials
- code reduction, documentation, code stubs for spheroid (#1901)
- make searchableSurfaceCollection available as 'collection'
for consistency with other objects
- use simpler decomposeParDict in tutorials, several had old
'boilerplate' decomposeParDict
- use simpler libs () format
- update surface sampling to use dictionary format
ENH: update libs of etc/caseDicts/postProcess items
ENH: ensure destructor=default
ENH: ensure constness
ENH: ensure no 'copy construct' and 'no copy assignment' exist
TUT: add examples of function objects with full set
of settings into a TUT if unavailable
TUT: update pisoFoam/RAS/cavity tutorial in terms of usage
The phase systems tables for multiphase solvers create conflict
between each other as they are defined in the same namespace and using
similar class names.
Therefore a special htc function object for reactingEulerSolver was
added (reactingEulerHtcModel), located under
src/phaseSystemModels/reactingEulerFoam/functionObjects/
This commit includes the following:
- Relocate solvers/reactingEulerFoam functionObjects to
src/phaseSystemModels
- Remove links for fieldFunctionObject to multiphase libs to avoid
conflicts
- New FO for htc for reactingEulerFoam called reactingEulerHtcModel
Now the thermal baffle can be extrapolated from a patch which is
coupled to the bottom patch of the solid region.
The user can set the T bc on the 'top' patch of the solid.
The new keyword is 'internal' and its default is true. Check new
tutorial for an example:
tutorials/heatTransfer/buoyantSimpleFoam/roomWithThickCeiling/