- an advanced feature, for example when sampling on a static patch
while some motion occurs elsewhere. [use with caution]
- If the sampled surface dictionary is modified during run-time, the
ensight file indexing for the geometry will become out of sync.
This is addressed in a subsequent commit.
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.
Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].
Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
and contributions in earlier version from
Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou
[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.
[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.
Integration into the official OpenFOAM release by OpenCFD
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
- Extended runTimePostProcessing to include access to "live"
simulation objects such a geometry patches and sampled surfaces
stored on the "functionObjectObjects" registry.
- Add 'live' runTimePostProcessing of cloud data.
Extracts position and fields from the cloud via its objectRegistry writer
- For the "live" simulation objects, there are two new volume filters
that work directly with the OpenFOAM volume fields:
* iso-surface
* cutting planes
Both use the VTK algorithms directly and support multiple values.
Eg, can make multiple iso-levels or multiple planes parallel to each
other.
- When VTK has been compiled with MPI-support, parallel rendering will
be used.
- Additional title text properties (shadow, italic etc)
- Simplified handling of scalar-bar and visibility switches
- Support multiple text positions. Eg, for adding watermark text.
- fits better into the general sampling framework, improves flexibilty
and allows code reduction.
ENH: include surface fields on sampledSurfaces that support it
- changed the sectorCoeffs keyword to 'point' from 'axisPt'
for more similarity with other dictionaries.
Continue to accept 'axisPt' for compatibility.
- the utility had automatic triangulation removed some time ago, but
never changed its name.
- catch old uses with a surfaceMeshTriangulate deprecated script
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)