Select using the optional
consistent true;
setting in the PIMPLE dictionary of fvSolution.
This option is generally only beneficial for cases run in PIMPLE-mode
with a large maximum Courant number.
to support laminar simulations in the new framework.
Unfortunately this allows LES models to be instantiated although they
are not compatible with steady-state simulations.
fvOptions does not have the appropriate structure to support MRF as it
is based on option selection by user-specified fields whereas MRF MUST
be applied to all velocity fields in the particular solver. A
consequence of the particular design choices in fvOptions made it
difficult to support MRF for multiphase and it is easier to support
frame-related and field related options separately.
Currently the MRF functionality provided supports only rotations but
the structure will be generalized to support other frame motions
including linear acceleration, SRF rotation and 6DoF which will be
run-time selectable.
SIMPLEC (SIMPLE-consistent) is selected by setting "consistent" option true/yes:
SIMPLE
{
nNonOrthogonalCorrectors 0;
consistent yes;
}
which relaxes the pressure in a "consistent" manner and additional
relaxation of the pressure is not generally necessary. In addition
convergence of the p-U system is better and reliable with less
aggressive relaxation of the momentum equation, e.g. for the motorbike
tutorial:
relaxationFactors
{
equations
{
U 0.9;
k 0.7;
omega 0.7;
}
}
The cost per iteration is marginally higher but the convergence rate is
better so the number of iterations can be reduced.
The SIMPLEC algorithm also provides benefit for cases with large
body-forces, e.g. SRF, see tutorials/incompressible/SRFSimpleFoam/mixer
and feature request http://www.openfoam.org/mantisbt/view.php?id=1714
Disadvantage is that the BC values have to be specified in terms of hU
rather than U. The alternative would be to add complex code to map h
and U BCs into the equivalent for hU.
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1566
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller
if they do not have neighbouring faces from which the values may be
interpolated. Also the old-time flux is set to the current flux values
following correction. This currently supports only Euler time-schemes.