Header information now includes, e.g.
f [Hz] vs P(f) [Pa]
Lower frequency: 2.500000e+01
Upper frequency: 5.000000e+03
Window model: Hanning
Window number: 2
Window samples: 512
Window overlap %: 5.000000e+01
dBRef : 2.000000e-05
Area average: false
Area sum : 6.475194e-04
Number of faces: 473
Note: output files now have .dat extension
GIT: relocate globalIndex (is independent of mesh)
STYLE: include label/scalar Fwd in contiguous.H
STYLE: unneed commSchedule include in GeometricField
- intended for the following type of use:
auto oldHandler = fileHandler(fileOperation::NewUncollated());
... do something that only works with uncollated
// Restore previous (if any)
if (oldHandler)
{
fileHandler(std::move(oldHandler));
}
ENH: make fileOperation distributed(bool) mutable
- use is "static-like" and akin to Pstream::parRun(bool),
thus allow toggling of the switch without a const_cast
The SPL can now be weighted according to the new 'SPLweighting' entry
that can be set to:
- none: no weighting
- dBA : dB(A)
- dBB : dB(B)
- dBC : dB(C)
- dBD : dB(D)
This commit also includes code refactoring of the noiseModel class to
remove the dependency on noiseFFT/declutter.
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- generalize some of the library extensions (.so vs .dylib).
Provide as wmake 'sysFunctions'
- added note about unsupported/incomplete system support
- centralize detection of ThirdParty packages into wmake/ subdirectory
by providing a series of scripts in the spirit of GNU autoconfig.
For example,
have_boost, have_readline, have_scotch, ...
Each of the `have_<package>` scripts will generally provide the
following type of functions:
have_<package> # detection
no_<package> # reset
echo_<package> # echoing
and the following type of variables:
HAVE_<package> # unset or 'true'
<package>_ARCH_PATH # root for <package>
<package>_INC_DIR # include directory for <package>
<package>_LIB_DIR # library directory for <package>
This simplifies the calling scripts:
if have_metis
then
wmake metisDecomp
fi
As well as reducing clutter in the corresponding Make/options:
EXE_INC = \
-I$(METIS_INC_DIR) \
-I../decompositionMethods/lnInclude
LIB_LIBS = \
-L$(METIS_LIB_DIR) -lmetis
Any additional modifications (platform-specific or for an external build
system) can now be made centrally.
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
- Could be related to interrupted builds.
So if there are any parts of the build that rely on an explicit
'wmakeLnInclude', make sure that the contents are properly updated.
--
ENH: improved feedback from top-level Allwmake
- Report which section (libraries, applications) is being built.
- Provide final summary of date, version, etc, which can be helpful
for later diagnosis or record keeping.
- The -log=XXX option for Allwmake now accepts a directory name
and automatically appends an appropriate log name.
Eg,
./Allwmake -log=logs/ ->> logs/log.linux64GccDPInt32Opt
The default name is built from the value of WM_OPTIONS.
--
BUG: shell not exiting properly in combination with -log option
- the use of 'tee' causes the shell to hang around.
Added an explicit exit to catch this.
--
- Detecting the '-k' (-non-stop) option at the top-level Allwmake, which
may improve robustness.
- Explicit continue-on-error for foamyMesh (as optional component)
- unify format of script messages for better readability
COMP: reduce warnings when building Pstream (old-style casts in openmpi)
Now the functionality to write single graph files or log files (vs time)
may be used in the creation of any form of functionObject, not just
those relating to a mesh region.
- Avoids the need for the 'OutputFilterFunctionObject' wrapper
- Time-control for execution and writing is now provided by the
'timeControlFunctionObject' which instantiates the processing
'functionObject' and controls its operation.
- Alternative time-control functionObjects can now be written and
selected at run-time without the need to compile wrapped version of
EVERY existing functionObject which would have been required in the
old structure.
- The separation of 'execute' and 'write' functions is now formalized in the
'functionObject' base-class and all derived classes implement the
two functions.
- Unnecessary implementations of functions with appropriate defaults
in the 'functionObject' base-class have been removed reducing
clutter and simplifying implementation of new functionObjects.
- The 'coded' 'functionObject' has also been updated, simplified and tested.
- Further simplification is now possible by creating some general
intermediate classes derived from 'functionObject'.
Function1 is an abstract base-class of run-time selectable unary
functions which may be composed of other Function1's allowing the user
to specify complex functions of a single scalar variable, e.g. time.
The implementations need not be a simple or continuous functions;
interpolated tables and polynomials are also supported. In fact form of
mapping between a single scalar input and a single primitive type output
is supportable.
The primary application of Function1 is in time-varying boundary
conditions, it also used for other functions of time, e.g. injected mass
is spray simulations but is not limited to functions of time.