to handle the size of bubbles created by boiling. To be used in
conjunction with the alphatWallBoilingWallFunction boundary condition.
The IATE variant of the wallBoiling tutorial case is provided to
demonstrate the functionality:
tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoilingIATE
Contributed by Juho Peltola, VTT
Notable changes:
1. The same wall function is now used for both phases, but user must
specify phaseType ‘liquid’ or ‘vapor’
2. Runtime selectable submodels for:
- wall heat flux partitioning between the phases
- nucleation site density
- bubble departure frequency
- bubble departure diameter
3. An additional iteration loop for the wall boiling model in case
the initial guess for the wall temperature proves to be poor.
The wallBoiling tutorial has been updated to demonstrate this new functionality.
to ensure 'patchType' is set as specified.
Required substantial change to the organization of the reading of the
'value' entry requiring careful testing and there may be some residual
issues remaining. Please report any problems with the reading and
initialization of patch fields.
Resolves bug-report http://bugs.openfoam.org/view.php?id=2266
Renamed the original 'laminar' model to 'Stokes' to indicate it is a
linear stress model supporting both Newtonian and non-Newtonian
viscosity.
This general framework will support linear, non-linear, visco-elastic
etc. laminar transport models.
For backward compatibility the 'Stokes' laminar stress model can be
selected either the original 'laminar' 'simulationType'
specification in turbulenceProperties:
simulationType laminar;
or using the new more general 'laminarModel' specification:
simulationType laminar;
laminar
{
laminarModel Stokes;
}
which allows other laminar stress models to be selected.
Required to support LTS with the -postProcess option with sub-models dependent on ddt
terms during construction, in particular reactingTwoPhaseEulerFoam.
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation). The advantages grow
as the complexity of the chemistry increases.
References:
Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
An effective method for solving combustion in engine simulations.
Proceedings of the Combustion Institute, 33(2), 3057-3064.
Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
Dias, V., & Jeanmart, H. (2012).
Simulations of advanced combustion modes using detailed chemistry
combined with tabulation and mechanism reduction techniques.
SAE International Journal of Engines,
5(2012-01-0145), 185-196.
Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
Mounaïm-Rousselle, C. (2013).
Experimental and numerical analysis of nitric oxide effect on the
ignition of iso-octane in a single cylinder HCCI engine.
Combustion and Flame, 160(8), 1476-1483.
Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
Dagaut, P. (2014).
CFD simulations using the TDAC method to model iso-octane combustion
for a large range of ozone seeding and temperature conditions
in a single cylinder HCCI engine.
Fuel, 137, 179-184.
Two tutorial cases are currently provided:
+ tutorials/combustion/chemFoam/ic8h18_TDAC
+ tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,
the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.
More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC. Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
Contributed by Alberto Passalacqua, Iowa State University
Foam::dragModels::Beetstra
Drag model of Beetstra et al. for monodisperse gas-particle flows obtained
with direct numerical simulations with the Lattice-Boltzmann method and
accounting for the effect of particle ensembles.
Reference:
\verbatim
Beetstra, R., van der Hoef, M. A., & Kuipers, J. a. M. (2007).
Drag force of intermediate Reynolds number flow past mono- and
bidisperse arrays of spheres.
AIChE Journal, 53(2), 489–501.
\endverbatim
Foam::dragModels::Tenneti
Drag model of Tenneti et al. for monodisperse gas-particle flows obtained
with particle-resolved direct numerical simulations and accounting for the
effect of particle ensembles.
Reference:
\verbatim
Tenneti, S., Garg, R., & Subramaniam, S. (2011).
Drag law for monodisperse gas–solid systems using particle-resolved
direct numerical simulation of flow past fixed assemblies of spheres.
International Journal of Multiphase Flow, 37(9), 1072–1092.
\verbatim
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry. Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':
Property | Description | Required | Default value
U | velocity field name | no | U
phi | flux field name | no | phi
.
.
.
However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.
Property | Description | Required | Default value
pName | pressure field name | no | p
UName | velocity field name | no | U
This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance. In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.