- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- faceBitSet, pointBitSet and faceBoolSet (similar to cellBitSet)
* allows topo sources in a wider variety of places.
* With copy or move constructors.
- cylinderToPoint, searchableSurfaceToFace, searchableSurfaceToPoint,
sphereToFace, sphereToPoint sources
- optional innerRadius for sphere and cylinder sources to treat as hollow.
- support "sets" as well as "set" for cellToCell, faceToFace... sources.
* convenience and avoids writing the set during processing.
- nBoundaryFaces() is often used and is identical to
(nFaces() - nInternalFaces()).
- forward the mesh nInternalFaces() and nBoundaryFaces() to
polyBoundaryMesh as nFaces() and start() respectively,
for use when operating on a polyBoundaryMesh.
STYLE:
- use identity() function with starting offset when creating boundary maps.
labelList map
(
identity(mesh.nBoundaryFaces(), mesh.nInternalFaces())
);
vs.
labelList map(mesh.nBoundaryFaces());
forAll(map, i)
{
map[i] = mesh.nInternalFaces() + i;
}
These new names are more consistent and logical because:
primitiveField():
primitiveFieldRef():
Provides low-level access to the Field<Type> (primitive field)
without dimension or mesh-consistency checking. This should only be
used in the low-level functions where dimensional consistency is
ensured by careful programming and computational efficiency is
paramount.
internalField():
internalFieldRef():
Provides access to the DimensionedField<Type, GeoMesh> of values on
the internal mesh-type for which the GeometricField is defined and
supports dimension and checking and mesh-consistency checking.
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().
See also commit 22f4ad32b1
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now. Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e
This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
//- Disallow default shallow-copy assignment
//
// Assignment of UList<T> may need to be either shallow (copy pointer)
// or deep (copy elements) depending on context or the particular type
// of list derived from UList and it is confusing and prone to error
// for the default assignment to be either. The solution is to
// disallow default assignment and provide separate 'shallowCopy' and
// 'deepCopy' member functions.
void operator=(const UList<T>&) = delete;
//- Copy the pointer held by the given UList.
inline void shallowCopy(const UList<T>&);
//- Copy elements of the given UList.
void deepCopy(const UList<T>&);
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
(e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
for fileModificationChecking manipulation.