Commit Graph

43 Commits

Author SHA1 Message Date
Mark Olesen
a85c55bbb5 ENH: ensure that content changes in coded objects are noticed (#1293)
- for codedFunctionObject and CodedSource the main code snippets
  were not included in the SHA1 calculation, which meant that many
  changes would not be noticed and no new library would be compiled.

  As a workaround, a dummy 'code' entry could be used solely for the
  purposes of generating a SHA1, but this is easily forgotten.

  We now allow tracking of the dynamicCodeContext for the coded
  objects and append to the SHA1 hasher with specific entries.
  This should solve the previous misbehaviour.

  We additionally add information about the ordering of the code
  sections. Suppose we have a coded function object (all code
  segments are optional) with the following:

      codeExecute "";
      codeWrite   #{ Info<< "Called\n"; #};

  which we subsequently change to this:

      codeExecute #{ Info<< "Called\n"; #};
      codeWrite   "";

  If the code strings are simply concatenated together, the SHA1 hashes
  will be identical. We thus 'salt' with their semantic locations,
  choosing tags that are unlikely to occur within the code strings
  themselves.

- simplify the coded templates with constexpr for the SHA1sum
  information.

- Correct the CodedSource to use 'codeConstrain' instead of
  'codeSetValue' for consistency with the underlying functions.
2019-05-01 14:00:54 +02:00
Mark Olesen
e1609d16d1 STYLE: use degToRad() instead of pi/180 2019-04-26 11:48:27 +02:00
Mark Olesen
60234ab007 STYLE: reduced nesting on return branching 2019-02-13 08:06:36 +01:00
OpenFOAM bot
154029ddd0 BOT: Cleaned up header files 2019-02-06 12:28:23 +00:00
Mark Olesen
1d85fecf4d ENH: use Zero when zero-initializing types
- makes the intent clearer and avoids the need for additional
  constructor casting. Eg,

      labelList(10, Zero)    vs.  labelList(10, 0)
      scalarField(10, Zero)  vs.  scalarField(10, scalar(0))
      vectorField(10, Zero)  vs.  vectorField(10, vector::zero)
2018-12-11 23:50:15 +01:00
Mark Olesen
a7a346b206 STYLE: indentation for FatalIOErrorInFunction calls 2018-11-06 09:49:22 +01:00
Mark Olesen
50baac3c45 ENH: construct string types from Istream now explicit (#1033)
- this helps for trapping unguarded dictionary lookups.
2018-11-03 20:24:34 +01:00
Mark Olesen
6043c9621d STYLE: accept "solver" or "motionSolver" without complaint
- The change from "solver" to "motionSolver" has not been
  applied consistently for all types of motion solvers.
2018-11-03 17:25:51 +01:00
Mark Olesen
07dafe7b0b STYLE: use range-for when looping dictionary entries.
- as part of the cleanup of dictionary access methods (c6520033c9)
  made the dictionary class single inheritance from IDLList<entry>.

  This eliminates any ambiguities for iterators and allows
  for simple use of range-for looping.

  Eg,
      for (const entry& e : topDict))
      {
          Info<< "entry:" << e.keyword() << " is dict:" << e.isDict() << nl;
      }

   vs

      forAllConstIter(dictionary, topDict, iter))
      {
          Info<< "entry:" << iter().keyword()
              << " is dict:" << iter().isDict() << nl;
      }
2018-10-19 13:08:24 +02:00
Mark Olesen
4e04c1966f ENH: use dictionary::get<word>() instead of lookup() in a few places 2018-10-19 09:11:31 +02:00
Mark Olesen
8a923518a5 STYLE: mark compatibility change in motionSolver keyword
- was "solver" in 1612 and "motionSolver" for later versions
2018-10-16 10:21:33 +02:00
Mark Olesen
873b2f0a9f STYLE: use explicit dictionary access for dictionaryEntry
- clarifies the meanings of get<T> etc, avoids later ambiguities.

ENH: simplify phaseProperties construction, add input checks
2018-10-16 09:58:49 +02:00
Mark Olesen
6697bb4735 ENH: improve, simplify, rationalize coordinate system handling (issue #863)
Previously the coordinate system functionality was split between
coordinateSystem and coordinateRotation. The coordinateRotation stored
the rotation tensor and handled all tensor transformations.

The functionality has now been revised and consolidated into the
coordinateSystem classes. The sole purpose of coordinateRotation
is now just to provide a selectable mechanism of how to define the
rotation tensor (eg, axis-angle, euler angles, local axes) for user
input, but after providing the appropriate rotation tensor it has
no further influence on the transformations.

--

The coordinateSystem class now contains an origin and a base rotation
tensor directly and various transformation methods.

  - The origin represents the "shift" for a local coordinate system.

  - The base rotation tensor represents the "tilt" or orientation
    of the local coordinate system in general (eg, for mapping
    positions), but may require position-dependent tensors when
    transforming vectors and tensors.

For some coordinate systems (currently the cylindrical coordinate system),
the rotation tensor required for rotating a vector or tensor is
position-dependent.

The new coordinateSystem and its derivates (cartesian, cylindrical,
indirect) now provide a uniform() method to define if the rotation
tensor is position dependent/independent.

The coordinateSystem transform and invTransform methods are now
available in two-parameter forms for obtaining position-dependent
rotation tensors. Eg,

      ... = cs.transform(globalPt, someVector);

In some cases it can be useful to use query uniform() to avoid
storage of redundant values.

      if (cs.uniform())
      {
          vector xx = cs.transform(someVector);
      }
      else
      {
          List<vector> xx = cs.transform(manyPoints, someVector);
      }

Support transform/invTransform for common data types:
   (scalar, vector, sphericalTensor, symmTensor, tensor).

====================
  Breaking Changes
====================

- These changes to coordinate systems and rotations may represent
  a breaking change for existing user coding.

- Relocating the rotation tensor into coordinateSystem itself means
  that the coordinate system 'R()' method now returns the rotation
  directly instead of the coordinateRotation. The method name 'R()'
  was chosen for consistency with other low-level entities (eg,
  quaternion).

  The following changes will be needed in coding:

      Old:  tensor rot = cs.R().R();
      New:  tensor rot = cs.R();

      Old:  cs.R().transform(...);
      New:  cs.transform(...);

  Accessing the runTime selectable coordinateRotation
  has moved to the rotation() method:

      Old:  Info<< "Rotation input: " << cs.R() << nl;
      New:  Info<< "Rotation input: " << cs.rotation() << nl;

- Naming consistency changes may also cause code to break.

      Old:  transformVector()
      New:  transformPrincipal()

  The old method name transformTensor() now simply becomes transform().

====================
  New methods
====================

For operations requiring caching of the coordinate rotations, the
'R()' method can be used with multiple input points:

       tensorField rots(cs.R(somePoints));

   and later

       Foam::transformList(rots, someVectors);

The rotation() method can also be used to change the rotation tensor
via a new coordinateRotation definition (issue #879).

The new methods transformPoint/invTransformPoint provide
transformations with an origin offset using Cartesian for both local
and global points. These can be used to determine the local position
based on the origin/rotation without interpreting it as a r-theta-z
value, for example.

================
  Input format
================

- Streamline dictionary input requirements

  * The default type is cartesian.
  * The default rotation type is the commonly used axes rotation
    specification (with e1/e2/3), which is assumed if the 'rotation'
    sub-dictionary does not exist.

    Example,

    Compact specification:

        coordinateSystem
        {
            origin  (0 0 0);
            e2      (0 1 0);
            e3      (0.5 0 0.866025);
        }

    Full specification (also accepts the longer 'coordinateRotation'
    sub-dictionary name):

        coordinateSystem
        {
            type    cartesian;
            origin  (0 0 0);

            rotation
            {
                type    axes;
                e2      (0 1 0);
                e3      (0.5 0 0.866025);
            }
        }

   This simplifies the input for many cases.

- Additional rotation specification 'none' (an identity rotation):

      coordinateSystem
      {
          origin  (0 0 0);
          rotation { type none; }
      }

- Additional rotation specification 'axisAngle', which is similar
  to the -rotate-angle option for transforming points (issue #660).
  For some cases this can be more intuitive.

  For example,

      rotation
      {
          type    axisAngle;
          axis    (0 1 0);
          angle   30;
      }
  vs.
      rotation
      {
          type    axes;
          e2      (0 1 0);
          e3      (0.5 0 0.866025);
      }

- shorter names (or older longer names) for the coordinate rotation
  specification.

     euler         EulerRotation
     starcd        STARCDRotation
     axes          axesRotation

================
  Coding Style
================
- use Foam::coordSystem namespace for categories of coordinate systems
  (cartesian, cylindrical, indirect). This reduces potential name
  clashes and makes a clearer declaration. Eg,

      coordSystem::cartesian csys_;

  The older names (eg, cartesianCS, etc) remain available via typedefs.

- added coordinateRotations namespace for better organization and
  reduce potential name clashes.
2018-10-01 13:54:10 +02:00
Mark Olesen
13778f7647 ENH: use dictionary::readEntry for detection of input errors (#762, #1033)
- instead of   dict.lookup(name) >> val;
  can use      dict.readEntry(name, val);

  for checking of input token sizes.
  This helps catch certain types of input errors:

  {

      key1 ;                // <- Missing value
      key2 1234             // <- Missing ';' terminator
      key3 val;
  }

STYLE: readIfPresent() instead of 'if found ...' in a few more places.
2018-10-05 10:15:13 +02:00
Andrew Heather
54457c68b6 Merge remote-tracking branch 'origin/master' into develop 2018-09-21 16:01:16 +01:00
Prashant
31fbc95f85 BUG: multiSolidBodyMotionSolver: parallel consistent message. Fixes #990. 2018-09-05 13:17:37 +01:00
Mark Olesen
f7dc92d744 STYLE: mark compatibility level for keyword redirectType (issue #912)
- was replaced with "name" in 1706
2018-07-05 09:26:26 +02:00
Andrew Heather
4e8fd19d3d ENH: Refactored creation of simplified meshes for -dry-run operation
TODO: migrate singleCellFvMesh into simplified mesh framework (?)
2018-06-11 12:42:09 +01:00
Mark Olesen
dc521b95df STYLE: consistent use of '= delete' 2018-05-30 12:03:17 +02:00
mattijs
f51ee9a0e2 Merge remote-tracking branch 'origin/develop' into develop-pre-release 2018-05-31 17:34:16 +01:00
Mark Olesen
f9fe71815a STYLE: consistent use of '= delete' for removed constructors/assignments
- make the purpose more explicit, and reduces some work for the
  compiler as well.
2018-05-30 12:03:17 +02:00
mattijs
977a9894b4 ENH: codedMotionSolver: motion solver with user-supplied coding 2018-05-21 08:59:01 +01:00
Mark Olesen
bac943e6fc ENH: new bitSet class and improved PackedList class (closes #751)
- The bitSet class replaces the old PackedBoolList class.
  The redesign provides better block-wise access and reduced method
  calls. This helps both in cases where the bitSet may be relatively
  sparse, and in cases where advantage of contiguous operations can be
  made. This makes it easier to work with a bitSet as top-level object.

  In addition to the previously available count() method to determine
  if a bitSet is being used, now have simpler queries:

    - all()  - true if all bits in the addressable range are empty
    - any()  - true if any bits are set at all.
    - none() - true if no bits are set.

  These are faster than count() and allow early termination.

  The new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

  The new find_first(), find_last(), find_next() methods provide a faster
  means of searching for bits that are set.

  This can be especially useful when using a bitSet to control an
  conditional:

  OLD (with macro):

      forAll(selected, celli)
      {
          if (selected[celli])
          {
              sumVol += mesh_.cellVolumes()[celli];
          }
      }

  NEW (with const_iterator):

      for (const label celli : selected)
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

      or manually

      for
      (
          label celli = selected.find_first();
          celli != -1;
          celli = selected.find_next()
      )
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

- When marking up contiguous parts of a bitset, an interval can be
  represented more efficiently as a labelRange of start/size.
  For example,

  OLD:

      if (isA<processorPolyPatch>(pp))
      {
          forAll(pp, i)
          {
              ignoreFaces.set(i);
          }
      }

  NEW:

      if (isA<processorPolyPatch>(pp))
      {
          ignoreFaces.set(pp.range());
      }
2018-03-07 11:21:48 +01:00
Andrew Heather
a230e8d408 STYLE: Correcting typos 2018-03-28 17:14:16 +01:00
Mark Olesen
018124e3bf STYLE: use 'return nullptr' for empty autoPtr/tmp returns
- both autoPtr and tmp are defined with an implicit construct from
  nullptr (but with explicit construct from a pointer to null).
  Thus is it safe to use 'nullptr' when returning an empty autoPtr or tmp.
2018-03-21 09:31:09 +01:00
Mark Olesen
2f86cdc712 STYLE: more consistent use of dimensioned Zero
- when constructing dimensioned fields that are to be zero-initialized,
  it is preferrable to use a form such as

      dimensionedScalar(dims, Zero)
      dimensionedVector(dims, Zero)

  rather than

      dimensionedScalar("0", dims, 0)
      dimensionedVector("zero", dims, vector::zero)

  This reduces clutter and also avoids any suggestion that the name of
  the dimensioned quantity has any influence on the field's name.

  An even shorter version is possible. Eg,

      dimensionedScalar(dims)

  but reduces the clarity of meaning.

- NB: UniformDimensionedField is an exception to these style changes
  since it does use the name of the dimensioned type (instead of the
  regIOobject).
2018-03-16 10:24:03 +01:00
Mark Olesen
5d1fb23555 ENH: code reduction in PackedList, PackedBoolList (issue #751)
- eliminate iterators from PackedList since they were unused, had
  lower performance than direct access and added unneeded complexity.

- eliminate auto-vivify for the PackedList '[] operator.
  The set() method provides any required auto-vivification and
  removing this ability from the '[]' operator allows for a lower
  when accessing the values. Replaced the previous cascade of iterators
  with simpler reference class.

PackedBoolList:

- (temporarily) eliminate logic and addition operators since
  these contained partially unclear semantics.

- the new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

- more consistent use of PackedBoolList test(), set(), unset() methods
  for fewer operation and clearer code. Eg,

      if (list.test(index)) ...    |  if (list[index]) ...
      if (!list.test(index)) ...   |  if (list[index] == 0u) ...
      list.set(index);             |  list[index] = 1u;
      list.unset(index);           |  list[index] = 0u;

- deleted the operator=(const labelUList&) and replaced with a setMany()
  method for more clarity about the intended operation and to avoid any
  potential inadvertent behaviour.
2018-03-13 08:32:40 +01:00
Mark Olesen
3d608bf06a ENH: remove reliance on the Xfer class (issue #639)
This class is largely a pre-C++11 holdover. It is now possible to
simply use move construct/assignment directly.

In a few rare cases (eg, polyMesh::resetPrimitives) it has been
replaced by an autoPtr.
2018-03-05 13:28:53 +01:00
Mark Olesen
660f3e5492 ENH: cleanup autoPtr class (issue #639)
Improve alignment of its behaviour with std::unique_ptr

  - element_type typedef
  - release() method - identical to ptr() method
  - get() method to get the pointer without checking and without releasing it.
  - operator*() for dereferencing

Method name changes

  - renamed rawPtr() to get()
  - renamed rawRef() to ref(), removed unused const version.

Removed methods/operators

  - assignment from a raw pointer was deleted (was rarely used).
    Can be convenient, but uncontrolled and potentially unsafe.
    Do allow assignment from a literal nullptr though, since this
    can never leak (and also corresponds to the unique_ptr API).

Additional methods

  - clone() method: forwards to the clone() method of the underlying
    data object with argument forwarding.

  - reset(autoPtr&&) as an alternative to operator=(autoPtr&&)

STYLE: avoid implicit conversion from autoPtr to object type in many places

- existing implementation has the following:

     operator const T&() const { return operator*(); }

  which means that the following code works:

       autoPtr<mapPolyMesh> map = ...;
       updateMesh(*map);    // OK: explicit dereferencing
       updateMesh(map());   // OK: explicit dereferencing
       updateMesh(map);     // OK: implicit dereferencing

  for clarity it may preferable to avoid the implicit dereferencing

- prefer operator* to operator() when deferenced a return value
  so it is clearer that a pointer is involve and not a function call
  etc    Eg,   return *meshPtr_;  vs.  return meshPtr_();
2018-02-26 12:00:00 +01:00
Mark Olesen
416a3790ea STYLE: prefer autoPtr::reset() to autoPtr::set()
- in most cases already checked valid() so don't need additional check
  for setting an existing pointer
2017-11-22 19:11:11 +01:00
Mark Olesen
c0ba7bf05a STYLE: use Ostream writeEntry when writing key/value entries
- makes for clearer code

ENH: make writeIfDifferent part of Ostream
2017-11-06 00:49:24 +01:00
Andrew Heather
d8d6030ab6 INT: Integration of Mattijs' collocated parallel IO additions
Original commit message:
------------------------

Parallel IO: New collated file format

When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
Mark Olesen
bc1f2fa97e STYLE: use auto and cfind to simplify selector usage (issue #512) 2017-07-03 10:36:03 +02:00
mattijs
fd665b4a3c ENH: overset: Initial release of overset capability.
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam

The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.

Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
2017-06-14 09:51:02 +01:00
Andrew Heather
db5348880e MRG: resolved merge conflicts from merge from develop branch 2017-05-19 16:29:54 +01:00
Andrew Heather
bb67ccd37d ENH: Cleaned up hash table item found checks 2017-05-19 11:15:35 +01:00
Andrew Heather
91b90da4f3 Integrated Foundation code to commit 104aac5 2017-05-17 16:35:18 +01:00
Henry Weller
ccc1a89c8b motionSolver: Changed keyword to select the motionSolver type to "motionSolver"
with backward-compatibility so that the previous keyword "solver" is supported.
2017-04-20 15:59:34 +01:00
Henry Weller
5c51836501 The "<type>Coeffs" sub-dictionary is now optional for most model parameters
except turbulence and lagrangian which will also be updated shortly.

For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:

transportModel  CrossPowerLaw;

CrossPowerLawCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  0.01;
    nuInf       [0 2 -1 0 0 0 0]  10;
    m           [0 0 1 0 0 0 0]   0.4;
    n           [0 0 0 0 0 0 0]   3;
}

BirdCarreauCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  1e-06;
    nuInf       [0 2 -1 0 0 0 0]  1e-06;
    k           [0 0 1 0 0 0 0]   0;
    n           [0 0 0 0 0 0 0]   1;
}

which allows a quick change between models, or using the simpler

transportModel  CrossPowerLaw;

nu0         [0 2 -1 0 0 0 0]  0.01;
nuInf       [0 2 -1 0 0 0 0]  10;
m           [0 0 1 0 0 0 0]   0.4;
n           [0 0 0 0 0 0 0]   3;

if quick switching between models is not required.

To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from

    // Seeding method.
    seedSampleSet   uniform;  //cloud; //triSurfaceMeshPointSet;

    uniformCoeffs
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

to the simpler

    // Seeding method.
    seedSampleSet
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

which also support the "<type>Coeffs" form

    // Seeding method.
    seedSampleSet
    {
        type        uniform;

        uniformCoeffs
        {
            axis        x;  //distance;

            // Note: tracks slightly offset so as not to be on a face
            start       (-1.001 -0.05 0.0011);
            end         (-1.001 -0.05 1.0011);
            nPoints     20;
        }
    }
2017-04-20 09:14:48 +01:00
Andrew Heather
c0f44ac4f3 MRG: Integrated foundation code 2016-12-12 12:10:29 +00:00
Henry Weller
97a27dc172 dynamicMotionSolverListFvMesh: Ensure independence of zone-based motion 2016-12-09 14:19:07 +00:00
Henry Weller
f303f2a289 motionSolver: Removed unused member data 2016-12-02 12:44:09 +00:00
Henry Weller
1c687baa35 dynamicMotionSolverListFvMesh: New mesh-motion solver supporting multiple moving regions
e.g. the motion of two counter-rotating AMI regions could be defined:

dynamicFvMesh   dynamicMotionSolverListFvMesh;

solvers
(
    rotor1
    {
        solver solidBody;

        cellZone        rotor1;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         6.2832; // rad/s
        }
    }

    rotor2
    {
        solver solidBody;

        cellZone        rotor2;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         -6.2832; // rad/s
        }
    }
);

Any combination of motion solvers may be selected but there is no special
handling of motion interaction; the motions are applied sequentially and
potentially cumulatively.

To support this new general framework the solidBodyMotionFvMesh and
multiSolidBodyMotionFvMesh dynamicFvMeshes have been converted into the
corresponding motionSolvers solidBody and multiSolidBody and the tutorials
updated to reflect this change e.g. the motion in the mixerVesselAMI2D tutorial
is now defined thus:

dynamicFvMesh   dynamicMotionSolverFvMesh;

solver solidBody;

solidBodyCoeffs
{
    cellZone        rotor;

    solidBodyMotionFunction  rotatingMotion;
    rotatingMotionCoeffs
    {
        origin        (0 0 0);
        axis          (0 0 1);
        omega         6.2832; // rad/s
    }
}
2016-12-01 15:57:15 +00:00