Example usage:
cloudFunctions
{
WeberNumber1
{
type WeberNumber;
}
}
This will calculate and write the Weber number field as a 'standard'
cloud field, available for post-processing alongside other lagrangian
fields in the lagrangian/<cloudName> directory.
ENH: update libs of etc/caseDicts/postProcess items
ENH: ensure destructor=default
ENH: ensure constness
ENH: ensure no 'copy construct' and 'no copy assignment' exist
TUT: add examples of function objects with full set
of settings into a TUT if unavailable
TUT: update pisoFoam/RAS/cavity tutorial in terms of usage
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
ENH: combustionModel, chemistryModel: Simplified model selection
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
ENH: combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
STYLE: combustionModel: Namespace changes
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
ENH: combustionModels: Default to the "none" model
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
Support the following expansions when they occur at the start of a
string:
Short-form Equivalent
========= ===========
<etc>/ ~OpenFOAM/ (as per foamEtcFile)
<case>/ $FOAM_CASE/
<constant>/ $FOAM_CASE/constant/
<system>/ $FOAM_CASE/system/
These can be used in fileName expansions to improve clarity and reduce
some typing
"<constant>/reactions" vs "$FOAM_CASE/constant/reactions"
- although this has been supported for many years, the tutorials
continued to use "convertToMeters" entry, which is specific to blockMesh.
The "scale" is more consistent with other dictionaries.
ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
consistent with use elsewhere.
- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow
The entries for liquid and solid species can now be simply be the name unless
property coefficients are overridden in which are specified in a dictionary as
before e.g. in the tutorials/lagrangian/coalChemistryFoam/simplifiedSiwek case
the water is simply specified
liquids
{
H2O;
}
and solid ash uses standard coefficients but the coefficients for carbon are
overridden thus
solids
{
C
{
rho 2010;
Cp 710;
kappa 0.04;
Hf 0;
emissivity 1.0;
}
ash;
}
The defaultCoeffs entry is now redundant and supported only for backward
compatibility. To specify a liquid with default coefficients simply leave the
coefficients dictionary empty:
liquids
{
H2O {}
}
Any or all of the coefficients may be overridden by specifying the properties in
the coefficients dictionary, e.g.
liquids
{
H2O
{
rho
{
a 1000;
b 0;
c 0;
d 0;
}
}
}
using a run-time selectable preconditioner
References:
Van der Vorst, H. A. (1992).
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems.
SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.
Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
(1994).
Templates for the solution of linear systems:
building blocks for iterative methods
(Vol. 43). Siam.
See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.
This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead. If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
so that the specification of the name and dimensions are optional in property dictionaries.
Update tutorials so that the name of the dimensionedScalar property is
no longer duplicated but optional dimensions are still provided and are
checked on read.
For multi-region cases the default location of blockMeshDict is now system/<region name>
If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller