- provide a plain stream() method on messageStream to reduce reliance
on casting operators and slightly opaque operator()() calls etc
- support alternative stream for messageStream serial output.
This can be used to support local redirection of output.
For example,
refPtr<OFstream> logging; // or autoPtr, unique_ptr etc
// Later...
Info.stream(logging.get())
<< "Detailed output ..." << endl;
This will use the stdout semantics in the normal case, or allow
redirection to an output file if a target output stream is defined,
but still effectively use /dev/null on non-master processes.
This is mostly the same as this ternary
(logging ? *logging : Info())
except that the ternary could be incorrect on sub-processes,
requires more typing etc.
ENH: use case-relative names of dictionary, IOstream for FatalIOError
- normally yields more easily understandable information
This adds a 'geometry' scheme section to the system/fvSchemes:
geometry
{
type highAspectRatio;
}
These 'fvGeometryMethod's are used to calculate
- deltaCoeffs
- nonOrthoCoeffs
etc and can even modify the basic face/cellCentres calculation.
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)
- nBoundaryFaces() is often used and is identical to
(nFaces() - nInternalFaces()).
- forward the mesh nInternalFaces() and nBoundaryFaces() to
polyBoundaryMesh as nFaces() and start() respectively,
for use when operating on a polyBoundaryMesh.
STYLE:
- use identity() function with starting offset when creating boundary maps.
labelList map
(
identity(mesh.nBoundaryFaces(), mesh.nInternalFaces())
);
vs.
labelList map(mesh.nBoundaryFaces());
forAll(map, i)
{
map[i] = mesh.nInternalFaces() + i;
}
- should use bitSet::set() and not bitSet::operator[] to auto-vivify
out-of-range entries
- use bitSet::test() instead of bitSet::operator[] when testing
non-const variables - circumvents any potential out-of-range issues.
- improves backward compatibility and more naming consistency.
Retain setMany(iter1, iter2) to avoid ambiguity with the
PackedList::set(index, value) method.
- The bitSet class replaces the old PackedBoolList class.
The redesign provides better block-wise access and reduced method
calls. This helps both in cases where the bitSet may be relatively
sparse, and in cases where advantage of contiguous operations can be
made. This makes it easier to work with a bitSet as top-level object.
In addition to the previously available count() method to determine
if a bitSet is being used, now have simpler queries:
- all() - true if all bits in the addressable range are empty
- any() - true if any bits are set at all.
- none() - true if no bits are set.
These are faster than count() and allow early termination.
The new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
The new find_first(), find_last(), find_next() methods provide a faster
means of searching for bits that are set.
This can be especially useful when using a bitSet to control an
conditional:
OLD (with macro):
forAll(selected, celli)
{
if (selected[celli])
{
sumVol += mesh_.cellVolumes()[celli];
}
}
NEW (with const_iterator):
for (const label celli : selected)
{
sumVol += mesh_.cellVolumes()[celli];
}
or manually
for
(
label celli = selected.find_first();
celli != -1;
celli = selected.find_next()
)
{
sumVol += mesh_.cellVolumes()[celli];
}
- When marking up contiguous parts of a bitset, an interval can be
represented more efficiently as a labelRange of start/size.
For example,
OLD:
if (isA<processorPolyPatch>(pp))
{
forAll(pp, i)
{
ignoreFaces.set(i);
}
}
NEW:
if (isA<processorPolyPatch>(pp))
{
ignoreFaces.set(pp.range());
}
- when constructing dimensioned fields that are to be zero-initialized,
it is preferrable to use a form such as
dimensionedScalar(dims, Zero)
dimensionedVector(dims, Zero)
rather than
dimensionedScalar("0", dims, 0)
dimensionedVector("zero", dims, vector::zero)
This reduces clutter and also avoids any suggestion that the name of
the dimensioned quantity has any influence on the field's name.
An even shorter version is possible. Eg,
dimensionedScalar(dims)
but reduces the clarity of meaning.
- NB: UniformDimensionedField is an exception to these style changes
since it does use the name of the dimensioned type (instead of the
regIOobject).
- eliminate iterators from PackedList since they were unused, had
lower performance than direct access and added unneeded complexity.
- eliminate auto-vivify for the PackedList '[] operator.
The set() method provides any required auto-vivification and
removing this ability from the '[]' operator allows for a lower
when accessing the values. Replaced the previous cascade of iterators
with simpler reference class.
PackedBoolList:
- (temporarily) eliminate logic and addition operators since
these contained partially unclear semantics.
- the new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
- more consistent use of PackedBoolList test(), set(), unset() methods
for fewer operation and clearer code. Eg,
if (list.test(index)) ... | if (list[index]) ...
if (!list.test(index)) ... | if (list[index] == 0u) ...
list.set(index); | list[index] = 1u;
list.unset(index); | list[index] = 0u;
- deleted the operator=(const labelUList&) and replaced with a setMany()
method for more clarity about the intended operation and to avoid any
potential inadvertent behaviour.
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
The typical topology is the one where boundary faces share non-consecutive
points (checkMesh reports this as 'Number of faces with non-consecutive shared points')
This is handled by no-extruding any of the vertices of both faces. Fixes#391.
- value corresponds to the max memory when the corresponding profiling
is started.
Only used when the top-level profiling has memInfo active.
- memInfo is disabled by default, since the new maxMem functionality
otherwise adds overhead with every call.
tutorial:
/lagrangian/reactingParcelFoam/verticalChannelLTS