This adds a 'geometry' scheme section to the system/fvSchemes:
geometry
{
type highAspectRatio;
}
These 'fvGeometryMethod's are used to calculate
- deltaCoeffs
- nonOrthoCoeffs
etc and can even modify the basic face/cellCentres calculation.
- code reduction, documentation, code stubs for spheroid (#1901)
- make searchableSurfaceCollection available as 'collection'
for consistency with other objects
- use simpler decomposeParDict in tutorials, several had old
'boilerplate' decomposeParDict
- use simpler libs () format
- update surface sampling to use dictionary format
The final leak can only be decided once all cells have been
deleted. So only exit on final invocation and give warning-only
beforehand. This avoids a lot of false positives.
The tutorial itself didn't actually produce a mesh with leakage
with the old settings. Upped the refinement level to force it
to go through the hole in the geometry.
- helps reduce clutter in the topoSetDict files.
Caveats when using this.
The older specification styles using "name" will conflict with the
set name. Eg,
{
name f0
type faceSet;
action add;
source patchToFace;
sourceInfo
{
name inlet;
}
}
would flattened to the following
{
name f0
type faceSet;
action add;
source patchToFace;
name inlet;
}
which overwrites the "name" used for the faceSet.
The solution is to use the updated syntax:
{
name f0
type faceSet;
action add;
source patchToFace;
patch inlet;
}
- improve doxygen entries for searchable surfaces.
- support selection of searchable surfaces with shorter names.
Eg,
type box | cylinder | ...;
vs type searchableBox | searchableCylinder | ...;
Within decomposeParDict, it is now possible to specify a different
decomposition method, methods coefficients or number of subdomains
for each region individually.
The top-level numberOfSubdomains remains mandatory, since this
specifies the number of domains for the entire simulation.
The individual regions may use the same number or fewer domains.
Any optional method coefficients can be specified in a general
"coeffs" entry or a method-specific one, eg "metisCoeffs".
For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
is used, and is also mandatory.
----
ENH: shortcut specification for multiLevel.
In addition to the longer dictionary form, it is also possible to
use a shorter notation for multiLevel decomposition when the same
decomposition method applies to each level.
Basic directional refinement:
- only for coordinate aligned meshes
- only for refinementRegions
See the mesh/snappyHexMesh/aerofoilNACA0012_directionalRefinement
tutorial.
- although this has been supported for many years, the tutorials
continued to use "convertToMeters" entry, which is specific to blockMesh.
The "scale" is more consistent with other dictionaries.
ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
consistent with use elsewhere.
- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow