Model which applies an analytical solution for heat transfer from the
surface of a sphere to the fluid within the sphere.
Provided by William Bainbridge
fvOptions does not have the appropriate structure to support MRF as it
is based on option selection by user-specified fields whereas MRF MUST
be applied to all velocity fields in the particular solver. A
consequence of the particular design choices in fvOptions made it
difficult to support MRF for multiphase and it is easier to support
frame-related and field related options separately.
Currently the MRF functionality provided supports only rotations but
the structure will be generalized to support other frame motions
including linear acceleration, SRF rotation and 6DoF which will be
run-time selectable.
Rather than forcing the dispersed-phase velocity -> the continuous-phase
velocity as the phase-fraction -> 0 the velocity is now calculated from
a balance of pressure, buoyancy and drag forces. The advantage is now
liquid or particles are not carried out of bubble-column of
fluidised-beds by the fictitious drag caused by forcing the
phase-velocities becoming equal in the limit.
This formulation provides C-grid like pressure-flux staggering on an
unstructured mesh which is hugely beneficial for Euler-Euler multiphase
equations as it allows for all forces to be treated in a consistent
manner on the cell-faces which provides better balance, stability and
accuracy. However, to achieve face-force consistency the momentum
transport terms must be interpolated to the faces reducing accuracy of
this part of the system but this is offset by the increase in accuracy
of the force-balance.
Currently it is not clear if this face-based momentum equation
formulation is preferable for all Euler-Euler simulations so I have
included it on a switch to allow evaluation and comparison with the
previous cell-based formulation. To try the new algorithm simply switch
it on, e.g.:
PIMPLE
{
nOuterCorrectors 3;
nCorrectors 1;
nNonOrthogonalCorrectors 0;
faceMomentum yes;
}
It is proving particularly good for bubbly flows, eliminating the
staggering patterns often seen in the air velocity field with the
previous algorithm, removing other spurious numerical artifacts in the
velocity fields and improving stability and allowing larger time-steps
For particle-gas flows the advantage is noticeable but not nearly as
pronounced as in the bubbly flow cases.
Please test the new algorithm on your cases and provide feedback.
Henry G. Weller
CFD Direct
Improves stability and convergence of systems in which drag dominates
e.g. small particles in high-speed gas flow.
Additionally a new ddtPhiCorr strategy is included in which correction
is applied only where the phases are nearly pure. This reduces
staggering patters near the free-surface of bubble-column simulations.
Currently these vectors are generated at the same time as the wall-distance field
by the same run-time selected algorithm. This will be changed so that the wall-reflection
vectors are only generated and stored if required.
When using models which require the wallDist e.g. kOmegaSST it will
request the method to be used from the wallDist sub-dictionary in
fvSchemes e.g.
wallDist
{
method meshWave;
}
specifies the mesh-wave method as hard-coded in previous OpenFOAM versions.