- use `#word` to concatenate, expand content with the resulting string
being treated as a word token. Can be used in dictionary or
primitive context.
In dictionary context, it fills the gap for constructing dictionary
names on-the-fly. For example,
```
#word "some_prefix_solverInfo_${application}"
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
The '#word' directive will automatically squeeze out non-word
characters. In the block content form, it will also strip out
comments. This means that this type of content should also work:
```
#word {
some_prefix_solverInfo
/* Appended with application name (if defined) */
${application:+_} // Use '_' separator
${application} // The application
}
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
This is admittedly quite ugly, but illustrates its capabilities.
- use `#message` to report expanded string content to stderr.
For example,
```
T
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-10;
relTol 0;
#message "using solver: $solver"
}
```
Only reports on the master node.
- use FACE_DATA (was SURFACE_DATA) for similarity with polySurface
ENH: add expression value enumerations and traits
- simple enumeration of standard types (bool, label, scalar, vector)
that can be used as a value type-code for internal bookkeeping.
GIT: relocate pTraits into general traits/ directory
- releases ownership of the pointer. A no-op (and returns nullptr)
for references.
Naming consistent with unique_ptr and autoPtr.
DOC: adjust wording for memory-related classes
- add is_const() method for tmp, refPtr.
Drop (ununsed and confusing looking) isTmp method from refPtr
in favour of is_pointer() or movable() checks
ENH: noexcept for some pTraits methods, remove redundant 'inline'
- test for const first for tmp/refPtr (simpler logic)
- previously had codeAddSup used for both incompressible and
compressible source terms. However, it was not actually possible to
use it for compressible sources since any references to the 'rho'
parameter would cause a compilation error for the incompressible case.
Added 'codeAddSupRho' to distinguish the compressible case.
User must supply one or both of them on input.
- decomposePar: -no-fields to suppress decomposition of fields
- makeFaMesh: -no-decompose to suppress creation of *ProcAddressing
and fields, -no-fields to suppress decomposition of fields only
- switch from default topology merge to point merge if degenerate
blocks are detected. This should alleviate the problems noted in
#1862.
NB: this detection only works for blocks with duplicate vertex
indices, not ones with geometrically duplicate points.
ENH: add patch block/face summary in blockMesh generation
- add blockMesh -verbose option to override the static or dictionary
settings. The -verbose option can be used multiple times to increase
the verbosity.
ENH: extend hexCell handling with more cellShape-type methods
- allows better reuse in blockMesh.
Remove blockMesh-local hex edge definitions that shadowed the
hexCell values.
ENH: simplify some of the block-edge internals
- similar to -dry-run handling, can be interrogated from argList,
which makes it simpler to add into utilities.
- support multiple uses of -dry-run and -verbose to increase the
level. For example, could have
someApplication -verbose -verbose
and inside of the application:
if (args.verbose() > 2) ...
BUG: error with empty distributed roots specification (fixes#2196)
- previously used the size of distributed roots to transmit if the
case was running in distributed mode, but this behaves rather poorly
with bad input. Specifically, the following questionable setup:
distributed true;
roots ( /*none*/ );
Now transmit the ParRunControl distributed() value instead,
and also emit a gentle warning for the user:
WARNING: running distributed but did not specify roots!
COMP: implicit cast scope name to C++-string in IOobject::scopedName
- handles 'const char*' and allows a check for an empty scope name
COMP: avoid potential name conflict in local function (Istream)
- reportedly some resolution issues (unconfirmed) with Fujitsu clang
- added -dry-run, -write-vtk options.
Additional mesh information after creation.
- add parallel reductions and more information for checkFaMesh
ENH: minor cleanup of faPatch internals
- align pointLabels and pointEdges creation more closely with coding
patterns used in PrimitivePatch
- use fileHandler when loading "S0" field.
- previous handling did not correctly account for off-processor
connections (SEGFAULT).
- revised the point/area normal calculations to use the dual of the
faces. This simplifies the logic and reduces the depth of loops.
Point corrections from the neighbouring patches is handled
centrally by the new halo face information, which properly handles
on-processor or off-processor faces irrespective of any explicit
processor patches.
STYLE: local function and add comments for finiteArea area weighting
- following the original Tukovic code, the area-weighted normal
for a vector pair (defining a triangle) is weighted by
(1) area : larger weight for larger areas
(2) sin : lower weight for narrow angles (eg, shards)
(3) invDist squared : lower weights for distant points
Refactored to eliminate intermediate operations, some additional
divide-by-zero protection - similar to vector normalise()
- the finiteArea is typically restricteed to one or more patches on a
polyMesh but will have an external connectivity to other parts of
the polyMesh. For proper determination of the point normals (for
example), the neighbouring information is needed.
These outside 'halo' faces can be located on different processors,
but not correspond to an internal processor-processor interface.
Add a dedicated form of mapDistribute for swapping this type of
information. Since this is a collective operation, locate
corresponding methods directly on the faMesh level instead of
the faPatch level.
- the case of 'fan-like' processor was previously assumed to be
rare (see merge-request !490 and issue #2084).
However, Vaggelis Papoutsis noticed that even fairly normal geometries
can trigger problems.
- replaced the old patch/patch matching style with a more general
edge-based synchronisation and matching that appears to handle
the corner cases inherently. The internal communication overhead
is essentially unchanged, and the logic is simpler.
ENH: additional framework for managing patch connectivity
- the patch remapping in faFieldDecomposer calls weights
internalField() which can trigger parallel communication on the
complete mesh for some processors only (ie, blocks).
Force a priori creation of weights instead.
- ensure that the complete mesh (reconstruction helper)
is serial when adding patches.
- when creating a finite-area mesh in parallel, need to determine
the equivalent ProcAddressing for the faMesh.
In the faceProcAddressing the collected and sorted order was being
scattered directly back to the individual processors instead of only
the sections relevant to each particular processor.
This caused the observed jumbled order for reconstructed fields.