- the ensightReadFile init() now automatically sets up binary/ascii
(for geometry files) and checks for the transient "BEGIN TIME STEP"
marker. If found, will also populate the file offsets for each of
the timesteps. If no corresponding footer is found (which would be
very inefficient), it simply pretends that there is only a single
time step instead of performing a costly file scan.
- parsing of the ensight case file now also supports the use of
filename numbers:
as an alternative to
filename start number:
filename increment:
- improved parsing robustness of "time values:" entry.
Can now also have contents on the same line as the introducer.
ENH: base-level adjustments for writing transient single-file
- beginGeometry() is now separated out from file creation.
- in append mode, ensightFile and ensightGeoFile will attempt to
parse existing time-step information.
- the timeSelector is often used to select single or multiple times
(eg, for post-processing). However, there are a few applications
where only a *single* time should be selected and set.
These are now covered by this type of use:
timeSelector::addOptions_singleTime(); // Single-time options
...
// Allow override of time from specified time options, or no-op
timeSelector::setTimeIfPresent(runTime, args);
In some cases, if can be desirable to force starting from the
initial Time=0 when no time options have been specified:
// Set time from specified time options, or force start from Time=0
timeSelector::setTimeIfPresent(runTime, args, true);
These changes make a number of includes redundant:
* addTimeOptions.H
* checkConstantOption.H
* checkTimeOption.H
* checkTimeOptions.H
* checkTimeOptionsNoConstant.H
ENH: add time handling to setFields, setAlphaField (#3143)
Co-authored-by: Johan Roenby <>
STYLE: replace instant("constant") with instant(0, "constant")
- avoids relying on atof parse behaviour returning zero
- The internal storage location of finite-area changes from being
piggybacked on the polyMesh registry to a having its own dedicated
registry:
* allows a clearer separation of field types without name clashes.
* prerequisite for supporting multiple finite-area regions (future)
Old Locations:
```
0/Us
constant/faMesh
system/faMeshDefinition
system/faSchemes
system/faSolution
```
New Locations:
```
0/finite-area/Us
constant/finite-area/faMesh
system/finite-area/faMeshDefinition (or system/faMeshDefinition)
system/finite-area/faSchemes
system/finite-area/faSolution
```
NOTES:
The new locations represent a hard change (breaking change) that
is normally to be avoided, but seamless compatibility handling
within the code was found to be unworkable.
The `foamUpgradeFiniteArea` script provides assistance with migration.
As a convenience, the system/faMeshDefinition location continues
to be supported (may be deprecated in the future).
- findStrings, findMatchingStrings now mostly covered by matching
intrinsics in wordRe and wordRes.
Add static wordRes match() and matching() variants
COMP: remove stringListOps include from objectRegistry.H
- was already noted for removal (NOV-2018)
Parts of the adjoint optimisation library were re-designed to generalise
the way sensitivity derivatives (SDs) are computed and to allow easier
extension to primal problems other than the ones governed by
incompressible flows. In specific:
- the adjoint solver now holds virtual functions returning the part of
SDs that depends only on the primal and the adjoint fields.
- a new class named designVariables was introduced which, apart from
defining the design variables of the optimisation problem and
providing hooks for updating them in an optimisation loop, provides
the part of the SDs that affects directly the flow residuals (e.g.
geometric variations in shape optimisation, derivatives of source
terms in topology optimisation, etc). The final assembly of the SDs
happens here, with the updated sensitivity class acting as an
intermediate.
With the new structure, when the primal problem changes (for instance,
passive scalars are included), the same design variables and sensitivity
classes can be re-used for all physics, with additional contributions to
the SDs being limited (and contained) to the new adjoint solver to be
implemented. The old code structure would require new SD classes for
each additional primal problem.
As a side-effect, setting up a case has arguably become a bit easier and
more intuitive.
Additional changes include:
---------------------------
- Changes in the formulation and computation of shape sensitivity derivatives
using the E-SI approach. The latter is now derived directly from the
FI approach, with proper discretization for the terms and boundary
conditions that emerge from applying the Gauss divergence theorem used
to transition from FI to E-SI. When E-SI and FI are based on the same
Laplace grid displacement model, they are now numerically equivalent
(the previous formulation proved the theoretical equivalence of the
two approaches but numerical results could differ, depending on the
case).
- Sensitivity maps at faces are now computed based (and are deriving
from) sensitivity maps at points, with a constistent point-to-face
interpolation (requires the differentiation of volPointInterpolation).
- The objective class now allocates only the member pointers that
correspond to the non-zero derivatives of the objective w.r.t. the
flow and geometric quantities, leading to a reduced memory footprint.
Additionally, contributions from volume-based objectives to the
adjoint equations have been re-worked, removing the need for
objectiveManager to be virtual.
- In constrained optimisation, an adjoint solver needs to be present for
each constraint function. For geometric constraints though, no adjoint
equations need to solved. This is now accounted for through the null
adjoint solver and the geometric objectives which do not allocate
adjoint fields for this kind of constraints, reducing memory
requirements and file clutter.
- Refactoring of the updateMethod to collaborate with the new
designVariables. Additionally, all updateMethods can now read and
write restart data in binary, facilitating exact continuation.
Furthermore, code shared by various quasi-Newton methods (BFGS, DBFGS,
LBFGS, SR1) has been organised in the namesake class. Over and above,
an SQP variant capable of tackling inequality constraints has been
added (ISQP, with I indicating that the QP problem in the presence of
inequality constraints is solved through an interior point method).
Inequality constraints can be one-sided (constraint < upper-value)
or double-sided (lower-value < constraint < upper-value).
- Bounds can now be defined for the design variables.
For volumetricBSplines in specific, these can be computed as the
mid-points of the control points and their neighbouring ones. This
usually leads to better-defined optimisation problems and reduces the
chances of an invalid mesh during optimisation.
- Convergence criteria can now be defined for the optimisation loop
which will stop if the relative objective function reduction over
the last objective value is lower than a given threshold and
constraints are satisfied within a give tolerance. If no criteria are
defined, the optimisation will run for the max. given number of cycles
provided in controlDict.
- Added a new grid displacement method based on the p-Laplacian
equation, which seems to outperform other PDE-based approaches.
TUT: updated the shape optimisation tutorials and added a new one
showcasing the use of double-sided constraints, ISQP, applying
no-overlapping constraints to volumetric B-Splines control points
and defining convergence criteria for the optimisation loop.
- enhance POSIX compliance
- apply distinct colours and dash type for each line
- standardize the frame size to 1200x627
- dynamically replace the title with <function-object-name>/<file-name>
- address underscore character issues
- introduce legend components for tensors
- resolve a bug caused by parentheses in tensor files
BUG: particleTrackProperties: correct the typo (fixes#3050)
- on large memory systems (eg, 6TB) the process information
exceeds an 'int' range, so adjust parsing of the /proc/..
to use int64
ENH: update/modernize OSspecific system information
ENH: minor update of profiling code
- std::string, noexcept, lazier evaluations
STYLE: use direct call of memInfo
- static version of polyMesh::meshDir(), which takes a region name
polyMesh::meshDir(regionName)
vs
polyMesh::regionName(regionName)/polyMesh::meshSubDir
STYLE: use polyMesh::regionName(..) instead of comparing to defaultRegion
STYLE: use getOrDefault when retrieving various -region options
FIX: polyMesh::dbDir() now checks registry name, not full path (#3033)
- in most cases a parallel-consistent order is required.
Even when the order is not important, it will generally require
fewer allocations to create a UPtrList of entries instead of a
HashTable or even a wordList.
- use typeHeaderOk<regIOobject>(false) for some generic file existence
checks. Often had something like labelIOField as a placeholder, but
that may be construed to have a particular something.
- this complements the whichPatch(meshFacei) method [binary search]
and the list of patchID() by adding internal range checks.
eg,
Before
~~~~~~
if (facei >= mesh.nInternalFaces() && facei < mesh.nFaces())
{
patchi = pbm.patchID()[facei - mesh.nInternalFaces()];
...
}
After
~~~~~
patchi = pbm.patchID(facei);
if (patchi >= 0)
{
...
}
- skip loading of fields with -no-internal, -no-boundary
- suppress reporting fields with -no-internal, -no-boundary
- cache loaded volume field for reuse with point interpolation.
Trade off some memory overhead against reading twice.
NOTE: this issue will not be evident with foamToEnsight since there
it only handles cell data *or* point data (not both), so a field is
only ever loaded/processed once.
- since ensight format is always float and also always written
component-wise, perform the double -> float narrowing when
extracting the components. This reduces the amount of data
transferred between processors.
ENH: avoid vtk/ensight parallel communication of empty messages
- since ensight writes by element type (eg, tet, hex, polyhedral) the
individual written field sections will tend to be relatively sparse.
Skip zero-size messages, which should help reduce some of the
synchronization bottlenecks.
ENH: use 'data chunking' when writing ensight files in parallel
- since ensight fields are written on a per-element basis, the
corresponding segment can become rather sparsely distributed. With
'data chunking', we attempt to get as many send/recv messages in
before flushing the buffer for writing. This should make the
sequential send/recv less affected by the IO time.
ENH: allow use of an external buffer when writing ensight components
STYLE: remove last vestiges of autoPtr<ensightFile> for output routines
- consistent with sumOp
ENH: globalIndex with gatherNonLocal tag, and use leading dispatch tags
- useful for gather/write where the master data can be written
separately. Leading vs trailing dispatch tags for more similarity to
other C++ conventions.
- replaced ad hoc handling of formatOptions with coordSetWriter and
surfaceWriter helpers.
Accompanying this change, it is now possible to specify "default"
settings to be inherited, format-specific settings and have a
similar layering with surface-specific overrides.
- snappyHexMesh now conforms to setFormats
Eg,
formatOptions
{
default
{
verbose true;
format binary;
}
vtk
{
precision 10;
}
}
surfaces
{
surf1
{
...
formatOptions
{
ensight
{
scale 1000;
}
}
}
}
Header information now includes, e.g.
f [Hz] vs P(f) [Pa]
Lower frequency: 2.500000e+01
Upper frequency: 5.000000e+03
Window model: Hanning
Window number: 2
Window samples: 512
Window overlap %: 5.000000e+01
dBRef : 2.000000e-05
Area average: false
Area sum : 6.475194e-04
Number of faces: 473
Note: output files now have .dat extension
- include -no-libs option by default, similar to '-lib',
which makes it available to all solvers/utilities.
Add argList allowLibs() method to query it.
- relocate with/no functionObjects logic from Time to argList
itself as argList allowFunctionObjects()
- add libs/functionObjects override handling to decomposePar etc
ENH: report the stream relativeName for IOerrors (see c9333a5ac8)
- consistent with defining IO of int32_t/int64_t and with recent
changes to ensightFile. Using the primitives directly instead of
typedefs to them makes the code somewhat less opaque.
STYLE: qualify format/version/compression with IOstreamOption not IOstream
STYLE: reduce number of lookups when scanning {fa,fv}Solution
STYLE: call IOobject::writeEndDivider as static
thermoTools is a relocation of various existing tools:
- src/TurbulenceModels/compressible/turbulentFluidThermoModels/derivedFvPatchFields/
- src/semiPermeableBaffle/derivedFvPatchFields/
- src/thermophysicalModels/thermophysicalPropertiesFvPatchFields/liquidProperties/
ENH: Allwmake: reordering various compilation steps
Co-authored-by: Kutalmis Bercin <kutalmis.bercin@esi-group.com>
- in various situations with mesh regions it is also useful to
filter out or remove the defaultRegion name (ie, "region0").
Can now do that conveniently from the polyMesh itself or as a static
function. Simply use this
const word& regionDir = polyMesh::regionName(regionName);
OR mesh.regionName()
instead of
const word& regionDir =
(
regionName != polyMesh::defaultRegion
? regionName
: word::null
);
Additionally, since the string '/' join operator filters out empty
strings, the following will work correctly:
(polyMesh::regionName(regionName)/polyMesh::meshSubDir)
(mesh.regionName()/polyMesh::meshSubDir)
- previously filtered on the existence of area fields, but with
faMesh::TryNew this is not required anymore.
STYLE: enable -verbose for various parallel utilities (consistency)
- specifies the number of consecutive cells to assign to the same
randomly chosen processor. Can be used to have a less extremely
random distribution for testing possible breaking points.
Eg,
method random;
coeffs
{
agglom 4;
}
- Add finiteArea cellID (actually face ids) / faceLabel and procID
for foamToVTK with -write-ids. Useful when this type of information
is needed.