The particular rotation sequence is specified via the enumeration:
//- Euler-angle rotation sequence
enum rotationSequence
{
ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, XZX
};
and provided as an argument to the constructor from Euler-angles
//- Construct a quaternion given the three Euler angles:
inline quaternion
(
const rotationSequence rs,
const vector& angles
);
and conversion to Euler-angles:
//- Return a vector of euler angles corresponding to the
// specified rotation sequence
inline vector eulerAngles(const rotationSequence rs) const;
DebugInfo:
Report an information message using Foam::Info if the local debug
switch is true
DebugInFunction:
Report an information message using Foam::Info for FUNCTION_NAME in
file __FILE__ at line __LINE__ if the local debug switch is true
Function1 is an abstract base-class of run-time selectable unary
functions which may be composed of other Function1's allowing the user
to specify complex functions of a single scalar variable, e.g. time.
The implementations need not be a simple or continuous functions;
interpolated tables and polynomials are also supported. In fact form of
mapping between a single scalar input and a single primitive type output
is supportable.
The primary application of Function1 is in time-varying boundary
conditions, it also used for other functions of time, e.g. injected mass
is spray simulations but is not limited to functions of time.
Now solvers return solver performance information for all components
with backward compatibility provided by the "max" function which created
the scalar solverPerformance from the maximum component residuals from
the SolverPerformance<Type>.
The residuals functionObject has been upgraded to support
SolverPerformance<Type> so that now the initial residuals for all
(valid) components are tabulated, e.g. for the cavity tutorial case the
residuals for p, Ux and Uy are listed vs time.
Currently the residualControl option of pimpleControl and simpleControl
is supported in backward compatibility mode (only the maximum component
residual is considered) but in the future this will be upgraded to
support convergence control for the components individually.
This development started from patches provided by Bruno Santos, See
http://www.openfoam.org/mantisbt/view.php?id=1824
The implementation now correspond to the definitions in the readily
available reference:
http://personalpages.manchester.ac.uk/staff/david.d.apsley/specturb.pdf
in which a large number of linear and non-linear models are presented in
a clean and consistent manner. This has made re-implementation and
checking far easier than working from the original references which anyway
are no longer available for the LienCubicKE and ShihQuadraticKE models.
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller
Currently these vectors are generated at the same time as the wall-distance field
by the same run-time selected algorithm. This will be changed so that the wall-reflection
vectors are only generated and stored if required.
When using models which require the wallDist e.g. kOmegaSST it will
request the method to be used from the wallDist sub-dictionary in
fvSchemes e.g.
wallDist
{
method meshWave;
}
specifies the mesh-wave method as hard-coded in previous OpenFOAM versions.