On 64-bit systems, the system installations of boost, cgal are under
lib64/. The behaviour for a ThirdParty build is mostly lib/ but this
can also be changing.
Boost 1_62_0 and older build into 'lib/'.
CGAL-4.9 builds into 'lib64/', older versions into 'lib/'.
Future-proof things by using lib$WM_COMPILER_LIB_ARCH for boost and
cgal build rules, and forcing these as build targets in the ThirdParty
makeCGAL as well.
--
STYLE: check for boost/version.hpp, CGAL/version.h instead their directories
- Place common code under OSspecific.
By including "endian.H", either one of WM_BIG_ENDIAN or WM_LITTLE_ENDIAN
will be defined.
Provides inline 32-bit and 64-bit byte swap routines that can be
used/re-used elsewhere.
The inplace memory swaps currently used by the VTK output are left for
the moment pending further cleanup of that code.
For example, to mesh a sphere with a single block the geometry is defined in the
blockMeshDict as a searchableSurface:
geometry
{
sphere
{
type searchableSphere;
centre (0 0 0);
radius 1;
}
}
The vertices, block topology and curved edges are defined in the usual
way, for example
v 0.5773502;
mv -0.5773502;
a 0.7071067;
ma -0.7071067;
vertices
(
($mv $mv $mv)
( $v $mv $mv)
( $v $v $mv)
($mv $v $mv)
($mv $mv $v)
( $v $mv $v)
( $v $v $v)
($mv $v $v)
);
blocks
(
hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)
);
edges
(
arc 0 1 (0 $ma $ma)
arc 2 3 (0 $a $ma)
arc 6 7 (0 $a $a)
arc 4 5 (0 $ma $a)
arc 0 3 ($ma 0 $ma)
arc 1 2 ($a 0 $ma)
arc 5 6 ($a 0 $a)
arc 4 7 ($ma 0 $a)
arc 0 4 ($ma $ma 0)
arc 1 5 ($a $ma 0)
arc 2 6 ($a $a 0)
arc 3 7 ($ma $a 0)
);
which will produce a mesh in which the block edges conform to the sphere
but the faces of the block lie somewhere between the original cube and
the spherical surface which is a consequence of the edge-based
transfinite interpolation.
Now the projection of the block faces to the geometry specified above
can also be specified:
faces
(
project (0 4 7 3) sphere
project (2 6 5 1) sphere
project (1 5 4 0) sphere
project (3 7 6 2) sphere
project (0 3 2 1) sphere
project (4 5 6 7) sphere
);
which produces a mesh that actually conforms to the sphere.
See OpenFOAM-dev/tutorials/mesh/blockMesh/sphere
This functionality is experimental and will undergo further development
and generalization in the future to support more complex surfaces,
feature edge specification and extraction etc. Please get involved if
you would like to see blockMesh become a more flexible block-structured
mesher.
Henry G. Weller, CFD Direct.
blockMesh -help
Usage: blockMesh [OPTIONS]
options:
-blockTopology write block edges and centres as .obj files
-case <dir> specify alternate case directory, default is the cwd
-dict <file> specify alternative dictionary for the blockMesh description
-noFunctionObjects
do not execute functionObjects
-region <name> specify alternative mesh region
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
Block description
For a given block, the correspondence between the ordering of
vertex labels and face labels is shown below.
For vertex numbering in the sequence 0 to 7 (block, centre):
faces 0 (f0) and 1 are left and right, respectively;
faces 2 and 3 are bottom and top;
and faces 4 and 5 are front the back:
4 ---- 5
f3 |\ |\ f5
| | 7 ---- 6 \
| 0 |--- 1 | \
| \| \| f4
f2 3 ---- 2
f0 ----- f1
Using: OpenFOAM-dev (see www.OpenFOAM.org)
Build: dev-dc59c63351e7
- CGAL itself includes its library dependencies, we only need to
provide the -L... option to the proper ThirdParty locations.
Should help improve general build robustness.
- instead we use the CGAL settings directly since they have the
same option of (version | system | none)
- may wish to review this again in the future.
- the checking for point-connected multiple-regions now also writes the
conflicting points to a pointSet
- with the -writeSets option it now also reconstructs & writes pointSets
In parallel the sets are reconstructed. e.g.
mpirun -np 6 checkMesh -parallel -allGeometry -allTopology -writeSets vtk
will create a postProcessing/ folder with the vtk files of the
(reconstructed) faceSets and cellSets.
Also improved analysis of disconnected regions now also checks for point
connectivity with is useful for detecting if AMI regions have duplicate
points.
Patch contributed by Mattijs Janssens