- the timeSelector is often used to select single or multiple times
(eg, for post-processing). However, there are a few applications
where only a *single* time should be selected and set.
These are now covered by this type of use:
timeSelector::addOptions_singleTime(); // Single-time options
...
// Allow override of time from specified time options, or no-op
timeSelector::setTimeIfPresent(runTime, args);
In some cases, if can be desirable to force starting from the
initial Time=0 when no time options have been specified:
// Set time from specified time options, or force start from Time=0
timeSelector::setTimeIfPresent(runTime, args, true);
These changes make a number of includes redundant:
* addTimeOptions.H
* checkConstantOption.H
* checkTimeOption.H
* checkTimeOptions.H
* checkTimeOptionsNoConstant.H
ENH: add time handling to setFields, setAlphaField (#3143)
Co-authored-by: Johan Roenby <>
STYLE: replace instant("constant") with instant(0, "constant")
- avoids relying on atof parse behaviour returning zero
- "buffered" corresponds to MPI_Bsend (buffered send),
whereas the old name "blocking" is misleading since the
regular MPI_Send also blocks until completion
(ie, buffer can be reused).
ENH: IPstream::read() returns std::streamsize instead of label (#3152)
- previously returned a 'label' but std::streamsize is consistent with
the input parameter and will help with later adjustments.
- use <label> instead of <int> for internal accounting of the message
size, for consistency with the underyling List<char> buffers used.
- improve handling for corner case of IPstream receive with
non-blocking, although this combination is not used anywhere
- findStrings, findMatchingStrings now mostly covered by matching
intrinsics in wordRe and wordRes.
Add static wordRes match() and matching() variants
COMP: remove stringListOps include from objectRegistry.H
- was already noted for removal (NOV-2018)
- particularly useful in these combinations:
1.
OCharStream buf;
// populate
ISpanStream is(buf.view());
// parse
2.
// read from file
ifile.getLine(str);
ISpanStream is(str);
// parse
These avoid making a copy of the character content, compared to
versions with stringstream:
OStringStream buf;
IStringStream is(buf.str());
Parts of the adjoint optimisation library were re-designed to generalise
the way sensitivity derivatives (SDs) are computed and to allow easier
extension to primal problems other than the ones governed by
incompressible flows. In specific:
- the adjoint solver now holds virtual functions returning the part of
SDs that depends only on the primal and the adjoint fields.
- a new class named designVariables was introduced which, apart from
defining the design variables of the optimisation problem and
providing hooks for updating them in an optimisation loop, provides
the part of the SDs that affects directly the flow residuals (e.g.
geometric variations in shape optimisation, derivatives of source
terms in topology optimisation, etc). The final assembly of the SDs
happens here, with the updated sensitivity class acting as an
intermediate.
With the new structure, when the primal problem changes (for instance,
passive scalars are included), the same design variables and sensitivity
classes can be re-used for all physics, with additional contributions to
the SDs being limited (and contained) to the new adjoint solver to be
implemented. The old code structure would require new SD classes for
each additional primal problem.
As a side-effect, setting up a case has arguably become a bit easier and
more intuitive.
Additional changes include:
---------------------------
- Changes in the formulation and computation of shape sensitivity derivatives
using the E-SI approach. The latter is now derived directly from the
FI approach, with proper discretization for the terms and boundary
conditions that emerge from applying the Gauss divergence theorem used
to transition from FI to E-SI. When E-SI and FI are based on the same
Laplace grid displacement model, they are now numerically equivalent
(the previous formulation proved the theoretical equivalence of the
two approaches but numerical results could differ, depending on the
case).
- Sensitivity maps at faces are now computed based (and are deriving
from) sensitivity maps at points, with a constistent point-to-face
interpolation (requires the differentiation of volPointInterpolation).
- The objective class now allocates only the member pointers that
correspond to the non-zero derivatives of the objective w.r.t. the
flow and geometric quantities, leading to a reduced memory footprint.
Additionally, contributions from volume-based objectives to the
adjoint equations have been re-worked, removing the need for
objectiveManager to be virtual.
- In constrained optimisation, an adjoint solver needs to be present for
each constraint function. For geometric constraints though, no adjoint
equations need to solved. This is now accounted for through the null
adjoint solver and the geometric objectives which do not allocate
adjoint fields for this kind of constraints, reducing memory
requirements and file clutter.
- Refactoring of the updateMethod to collaborate with the new
designVariables. Additionally, all updateMethods can now read and
write restart data in binary, facilitating exact continuation.
Furthermore, code shared by various quasi-Newton methods (BFGS, DBFGS,
LBFGS, SR1) has been organised in the namesake class. Over and above,
an SQP variant capable of tackling inequality constraints has been
added (ISQP, with I indicating that the QP problem in the presence of
inequality constraints is solved through an interior point method).
Inequality constraints can be one-sided (constraint < upper-value)
or double-sided (lower-value < constraint < upper-value).
- Bounds can now be defined for the design variables.
For volumetricBSplines in specific, these can be computed as the
mid-points of the control points and their neighbouring ones. This
usually leads to better-defined optimisation problems and reduces the
chances of an invalid mesh during optimisation.
- Convergence criteria can now be defined for the optimisation loop
which will stop if the relative objective function reduction over
the last objective value is lower than a given threshold and
constraints are satisfied within a give tolerance. If no criteria are
defined, the optimisation will run for the max. given number of cycles
provided in controlDict.
- Added a new grid displacement method based on the p-Laplacian
equation, which seems to outperform other PDE-based approaches.
TUT: updated the shape optimisation tutorials and added a new one
showcasing the use of double-sided constraints, ISQP, applying
no-overlapping constraints to volumetric B-Splines control points
and defining convergence criteria for the optimisation loop.
- use Foam::zero as a dispatch tag
FIX: return moleculeCloud::constProps() List by reference not copy
STYLE: range-for when iterating cloud parcels
STYLE: more consistent typedefs / declarations for Clouds
- replace typeGlobal() global function with is_globalIOobject
traits for more consistent and easier overriding.
- relocate typeFilePath() global function as a member of IOobject
for consistency with typeHeaderOk.
BUG: faSchemes, fvSchemes not marked as global file types
- caused issues with collated
- static version of polyMesh::meshDir(), which takes a region name
polyMesh::meshDir(regionName)
vs
polyMesh::regionName(regionName)/polyMesh::meshSubDir
STYLE: use polyMesh::regionName(..) instead of comparing to defaultRegion
STYLE: use getOrDefault when retrieving various -region options
FIX: polyMesh::dbDir() now checks registry name, not full path (#3033)
- in most cases a parallel-consistent order is required.
Even when the order is not important, it will generally require
fewer allocations to create a UPtrList of entries instead of a
HashTable or even a wordList.
- MPI_THREAD_MULTIPLE is usually undesirable for performance reasons,
but in some cases may be necessary if a linked library expects it.
Provide a '-mpi-threads' option to explicitly request it.
ENH: consolidate some looping logic within argList
- use typeHeaderOk<regIOobject>(false) for some generic file existence
checks. Often had something like labelIOField as a placeholder, but
that may be construed to have a particular something.
- this complements the whichPatch(meshFacei) method [binary search]
and the list of patchID() by adding internal range checks.
eg,
Before
~~~~~~
if (facei >= mesh.nInternalFaces() && facei < mesh.nFaces())
{
patchi = pbm.patchID()[facei - mesh.nInternalFaces()];
...
}
After
~~~~~
patchi = pbm.patchID(facei);
if (patchi >= 0)
{
...
}
ENH: add pTraits and IO for std::int8_t
STYLE: cull some implicitly available includes
- pTraits.H is included by label/scalar etc
- zero.H is included by UList
STYLE: cull redundant forward declarations for Istream/Ostream
- newer naming allows for less confusing code.
Eg,
max(lower) -> clamp_min(lower)
min(upper) -> clamp_max(upper)
- prefer combined method, for few operations.
Eg,
max(lower) + min(upper) -> clamp_range(lower, upper)
The updated naming also helps avoid some obvious coding errors.
Eg,
Re.min(1200.0);
Re.max(18800.0);
instead of
Re.clamp_range(1200.0, 18800.0);
- can also use implicit conversion of zero_one to MinMax<Type> for
this type of code:
lambda_.clamp_range(zero_one{});
- symmetrical evaluation for processor patches, eliminates
scalar/vector multiply followed by projection.
STYLE: use evaluateCoupled instead of local versions
- proper component-wise clamping for MinMax clamp().
- construct clampOp from components
- propagate clamp() method from GeometricField to FieldField and Field
- clamp_min() and clamp_max() for one-sided clamping,
as explicit alternative to min/max free functions which can
be less intuitive and often involve additional field copies.
- top-level checks to skip applying invalid min/max ranges
and bypass the internal checks of MinMax::clamp() etc.
COMP: update include for CGAL-5.5 (#2665)
old: Robust_circumcenter_filtered_traits_3
new: Robust_weighted_circumcenter_filtered_traits_3
COMP: adjust CGAL rule for OSX (#2664)
- since CGAL is now header-only, the previous OSX-specific rules have
become redundant
- was previously populated with "IOobject" (the typeName) but then
cannot easily detect if the object was actually read.
Also clear the headerClassName on a failed read
BUG: parallel inconsistency in regIOobject::readHeaderOk
- headerOk() checked with master, but possible parallel operations
within it
- comprises a few different elements:
FilterField (currently packaged in PatchFunction1Types namespace)
~~~~~~~~~~~
The FilterField helper class provides a multi-sweep median filter
for a Field of data associated with a geometric point cloud.
The points can be freestanding or the faceCentres (or points)
of a meshedSurface, for example.
Using an initial specified search radius, the nearest point
neighbours are gathered and addressing/weights are built for them.
This currently uses an area-weighted, linear RBF interpolator
with provision for quadratic RBF interpolator etc.
After the weights and addressing are established,
the evaluate() method can be called to apply a median filter
to data fields, with a specified number of sweeps.
boundaryDataSurfaceReader
~~~~~~~~~~~~~~~~~~~~~~~~~
- a surfaceReader (similar to ensightSurfaceReader) when a general
point data reader is needed.
MappedFile
~~~~~~~~~~
- has been extended to support alternative surface reading formats.
This allows, for example, sampled ensight data to be reused for
mapping. Cavaet: multi-patch entries may still needs some work.
- additional multi-sweep median filtering of the input data.
This can be used to remove higher spatial frequencies when
sampling onto a coarse mesh.
smoothSurfaceData
~~~~~~~~~~~~~~~~~
- standalone application for testing of filter radii/sweeps
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
- null() static method
* as const reference to the invertedBox with the appropriate casting.
- boundBox inflate(random)
* refactored from treeBoundBox::extend, but allows in-place modification
- boundBox::hexFaces() instead of boundBox::faces
* rarely used, but avoids confusion with treeBoundBox::faces
and reuses hexCell face definitions without code duplication
- boundBox::hexCorners() for corner points corresponding to a hexCell.
Can also be accessed from a treeBoundBox without ambiguity with
points(), which could be hex corners (boundBox) or octant corners
(treeBoundBox)
- boundBox::add with pairs of points
* convenient (for example) when adding edges or a 'box' that has
been extracted from a primitive mesh shape.
- declare boundBox nPoints(), nFaces(), nEdges() as per hexCell
ENH: return invertedBox instead of FatalError for empty trees
- similar to #2612
ENH: cellShape(HEX, ...) + boundBox hexCorners for block meshes
STYLE: cellModel::ref(...) instead of de-reference cellModel::ptr(...)
ENH: use direct access to pointHit as point(), use dist(), distSqr()
- if the pointHit has already been checked for hit(), can/should
simply use point() noexcept access subsequently to avoid redundant
checks. Using vector distSqr() methods provides a minor optimization
(no itermediate temporary), but can also make for clearer code.
ENH: copy construct pointIndexHit with different index
- symmetric with constructing from a pointHit with an index
STYLE: prefer pointHit point() instead of rawPoint()
- consistent with sumOp
ENH: globalIndex with gatherNonLocal tag, and use leading dispatch tags
- useful for gather/write where the master data can be written
separately. Leading vs trailing dispatch tags for more similarity to
other C++ conventions.
- end_value() corresponds to the infrequently used after() method, but
with naming that corresponds better to iterator naming conventions.
Eg,
List<Type> list = ...;
labelRange range = ...;
std::transform
(
(list.data() + range.begin_value()),
(list.data() + range.end_value()),
outIter,
op
);
- promote min()/max() methods from labelRange to IntRange base class
STYLE: change timeSelector from "is-a" to "has-a" scalarRanges.
- avoids redundant dictionary searching
STYLE: remove dictionary lookupOrDefaultCompat wrapper
- deprecated and replaced by getOrDefaultCompat (2019-05).
The function is usually specific to internal keyword upgrading
(version compatibility) and unlikely to exist in any user code.