Commit Graph

2474 Commits

Author SHA1 Message Date
Henry Weller
ddc694e632 reactingParcelFilmFoam tutorials: Updated contact-angle specification 2017-03-28 08:27:48 +01:00
Chris Greenshields
4c52f8ff1d sloshingCylinder tutorial: sloshing in cylinder under zero gravity
Demonstrates meshing a cylinder with hemispehrical ends using snappyHexMesh with
a polar background mesh that uses the point and edge projection feature of blockMesh.
The case prescribes a multiMotion on the cylinder, combining an oscillatingLinearMotion
and transverse rotatingMotion.
2017-03-24 14:43:53 +00:00
Chris Greenshields
f3feb1aa0a tutorials: moved laminar interDyMFoam examples into "laminar" directory 2017-03-24 12:33:37 +00:00
Henry Weller
e66e402976 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2017-03-18 17:19:35 +00:00
Henry Weller
864fc239c8 tutorials/combustion/reactingFoam/RAS/DLR_A_LTS: Reduced the endTime 2017-03-18 17:15:58 +00:00
Henry Weller
98de229365 Function1: Added "Ramp" to the names of the ramp functions to avoid conflict
with more general forms of those functions.
2017-03-18 17:10:48 +00:00
Chris Greenshields
6f5caf28d5 pitzDaily tutorials: updated blockMeshDict files to use multi-grading
The pitzDaily case uses a lot of mesh grading close to walls and the shear layer.
Prior to v2.4, blockMesh only permitted grading in one direction within a single block,
so the pitzDaily mesh comprised of 13 blocks to accommodate the complex grading pattern.

blockMesh has multi-grading that allows users to divide a block in a given direction and
apply different grading within each division.  The mesh generated with blockMesh using
13 blocks has been replaced with a mesh of 5 blocks that use multi-grading.  The new
blockMeshDict configuration produces a mesh very similar to the original 13-block mesh.
2017-03-17 12:42:13 +00:00
Henry Weller
dd15478158 combustionModels::EDC: New Eddy Dissipation Concept (EDC) turbulent combustion model
including support for TDAC and ISAT for efficient chemistry calculation.

Description
    Eddy Dissipation Concept (EDC) turbulent combustion model.

    This model considers that the reaction occurs in the regions of the flow
    where the dissipation of turbulence kinetic energy takes place (fine
    structures). The mass fraction of the fine structures and the mean residence
    time are provided by an energy cascade model.

    There are many versions and developments of the EDC model, 4 of which are
    currently supported in this implementation: v1981, v1996, v2005 and
    v2016.  The model variant is selected using the optional \c version entry in
    the \c EDCCoeffs dictionary, \eg

    \verbatim
        EDCCoeffs
        {
            version v2016;
        }
    \endverbatim

    The default version is \c v2015 if the \c version entry is not specified.

    Model versions and references:
    \verbatim
        Version v2005:

            Cgamma = 2.1377
            Ctau = 0.4083
            kappa = gammaL^exp1 / (1 - gammaL^exp2),

            where exp1 = 2, and exp2 = 2.

            Magnussen, B. F. (2005, June).
            The Eddy Dissipation Concept -
            A Bridge Between Science and Technology.
            In ECCOMAS thematic conference on computational combustion
            (pp. 21-24).

        Version v1981:

            Changes coefficients exp1 = 3 and exp2 = 3

            Magnussen, B. (1981, January).
            On the structure of turbulence and a generalized
            eddy dissipation concept for chemical reaction in turbulent flow.
            In 19th Aerospace Sciences Meeting (p. 42).

        Version v1996:

            Changes coefficients exp1 = 2 and exp2 = 3

            Gran, I. R., & Magnussen, B. F. (1996).
            A numerical study of a bluff-body stabilized diffusion flame.
            Part 2. Influence of combustion modeling and finite-rate chemistry.
            Combustion Science and Technology, 119(1-6), 191-217.

        Version v2016:

            Use local constants computed from the turbulent Da and Re numbers.

            Parente, A., Malik, M. R., Contino, F., Cuoci, A., & Dally, B. B.
            (2016).
            Extension of the Eddy Dissipation Concept for
            turbulence/chemistry interactions to MILD combustion.
            Fuel, 163, 98-111.
    \endverbatim

Tutorials cases provided: reactingFoam/RAS/DLR_A_LTS, reactingFoam/RAS/SandiaD_LTS.

This codes was developed and contributed by

    Zhiyi Li
    Alessandro Parente
    Francesco Contino
    from BURN Research Group

and updated and tested for release by

    Henry G. Weller
    CFD Direct Ltd.
2017-03-17 09:44:15 +00:00
Chris Greenshields
78eba84ee3 BernardCells: tutorial demonstrating Bernard cells
2D buoyancy-driven flow between flat plates with small temperature difference
2017-03-15 19:18:37 +00:00
Henry Weller
47d7240412 turbulenceModels::RAS: Corrected sign of "C3" dilatation term
Set default value of C3 to 0
Set C3 to -0.33 in the engineFoam/kivaTest tutorial.

Resolves bug-report https://bugs.openfoam.org/view.php?id=2496
2017-03-13 18:01:39 +00:00
Henry Weller
7f5c135020 wingMotion tutorial: Corrected fvSolution file 2017-03-09 23:11:30 +00:00
Henry Weller
1be5f699e5 decomposePar: Added 'copyZero' option
Using

decomposePar -copyZero

The mesh is decomposed as usual but the '0' directory is recursively copied to
the 'processor.*' directories rather than decomposing the fields.  This is a
convenient option to handle cases where the initial field files are generic and
can be used for serial or parallel running.  See for example the
incompressible/simpleFoam/motorBike tutorial case.
2017-03-08 11:48:06 +00:00
Henry Weller
7a99465d2a verticalChannel tutorial: removed 'bounded' from the 'div(phid,p)' scheme. 2017-03-08 11:34:08 +00:00
Henry Weller
7aed8c2904 tutorials: Updated pcorr settings in fvSolution to provide pcorrFinal if required 2017-03-07 11:48:20 +00:00
Henry Weller
55e7a77ac6 tutorials/incompressible/pisoFoam/LES/motorBike/motorBike/Allrun: Remove previous 0 directories
Patch contributed by Mattijs Janssens
2017-03-06 23:18:13 +00:00
Henry Weller
fe548839c5 tutorials/incompressible/pisoFoam/LES/motorBike: Removed unused $1 arguments to xargs
Resolves bug-report https://bugs.openfoam.org/view.php?id=2475
2017-02-28 11:27:28 +00:00
Henry Weller
50516486a4 rhoPimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.

rhoPimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, see also commit a1c8cde310
2017-02-28 11:14:59 +00:00
Henry Weller
7d6845defa rhoSimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
2017-02-24 16:20:06 +00:00
Henry Weller
a1c8cde310 rhoSimpleFoam: added support for compressible liquid flows
rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.

thermoType
{
    type            hePsiThermo;
    mixture         pureMixture;
    transport       sutherland;
    thermo          janaf;
    equationOfState perfectGas;
    specie          specie;
    energy          sensibleInternalEnergy;
}

instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    properties      liquid;
    energy          sensibleInternalEnergy;
}

mixture
{
    H2O;
}

instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.

In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.

For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.

SIMPLE
{
    nNonOrthogonalCorrectors 0;

    pMinFactor      0.1;
    pMaxFactor      1.5;

    transonic       yes;
    consistent      yes;

    residualControl
    {
        p               1e-3;
        U               1e-4;
        e               1e-3;
        "(k|epsilon|omega)" 1e-3;
    }
}
2017-02-24 11:18:01 +00:00
Henry Weller
f6dacfb484 liquidThermo: rhoThermo instantiated on liquidProperties
This allows single, multi-phase and VoF compressible simulations to be performed
with the accurate thermophysical property functions for liquids provided by the
liquidProperty classes.  e.g. in the
multiphase/compressibleInterFoam/laminar/depthCharge2D tutorial water can now be
specified by

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    properties      liquid;
    energy          sensibleInternalEnergy;
}

mixture
{
    H2O;
}

as an alternative to the previous less accurate representation defined by

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    transport       const;
    thermo          hConst;
    equationOfState perfectFluid;
    specie          specie;
    energy          sensibleInternalEnergy;
}

mixture
{
    specie
    {
        molWeight   18.0;
    }
    equationOfState
    {
        R           3000;
        rho0        1027;
    }
    thermodynamics
    {
        Cp          4195;
        Hf          0;
    }
    transport
    {
        mu          3.645e-4;
        Pr          2.289;
    }
}

However the increase in accuracy of the new simpler and more convenient
specification and representation comes at a cost: the NSRDS functions used by
the liquidProperties classes are relatively expensive to evaluate and the
depthCharge2D case takes ~14% longer to run.
2017-02-19 16:44:00 +00:00
Henry Weller
de44d09ad9 liquidProperties, solidProperties: Simplified input
The entries for liquid and solid species can now be simply be the name unless
property coefficients are overridden in which are specified in a dictionary as
before e.g. in the tutorials/lagrangian/coalChemistryFoam/simplifiedSiwek case
the water is simply specified

liquids
{
    H2O;
}

and solid ash uses standard coefficients but the coefficients for carbon are
overridden thus

solids
{
    C
    {
        rho             2010;
        Cp              710;
        kappa           0.04;
        Hf              0;
        emissivity      1.0;
    }

    ash;
}
2017-02-18 12:43:10 +00:00
Henry Weller
9b4f327e2b liquidProperties: Simplified dictionary format
The defaultCoeffs entry is now redundant and supported only for backward
compatibility.  To specify a liquid with default coefficients simply leave the
coefficients dictionary empty:

    liquids
    {
        H2O {}
    }

Any or all of the coefficients may be overridden by specifying the properties in
the coefficients dictionary, e.g.

    liquids
    {
        H2O
        {
            rho
            {
                a 1000;
                b 0;
                c 0;
                d 0;
            }
        }
    }
2017-02-17 22:08:42 +00:00
Henry Weller
c52e4b58a1 thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
Henry Weller
b167c95f19 compressibleInterFoam: Completed LTS and semi-implicit MULES support
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.

The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
2017-02-09 17:31:57 +00:00
Henry Weller
8264c3b988 interDyMFoam: Reinstate alphaPhiCorr0 for moving meshes without topology change 2017-02-07 09:59:19 +00:00
Henry Weller
4e5dc43418 snappyHexMesh: Added "noRefinement" writeFlag to control the writing of cellLevel, pointLevel etc. files
By default snappyHexMesh writes files relating to the hex-splitting process into
the polyMesh directory: cellLevel level0Edge pointLevel surfaceIndex

but by setting the noRefinement flag:

writeFlags
(
    noRefinement
    .
    .
    .
);

these optional files which are generally not needed are not written.

If you run the three stages of snappyHexMesh separately or run a dynamic mesh
solver supporting refinement and unrefinement these files are needed
and "noRefinement" should not be set.
2017-01-24 22:28:36 +00:00
Henry Weller
1e36c99588 PaSR: Removed deprecated "turbulentReaction" switch
To run with laminar reaction rates choose the "laminar" combustion model rather
than setting "turbulentReaction no;" in the "PaSR" model.
2017-01-20 17:17:14 +00:00
Henry Weller
1c2093c8b3 Multi-phase solvers: Improved handling of inflow/outflow BCs in MULES
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.

Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
2017-01-17 22:43:47 +00:00
Henry Weller
1abec0652d tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC: Added deltaT to TDAC controls 2017-01-17 22:41:30 +00:00
Henry Weller
47bd8e13f7 TDACChemistryModel: simplified, rationalized and automated the handling of variableTimeStep 2017-01-09 21:40:39 +00:00
Henry Weller
7e22440dc5 TDACChemistryModel: Added support for variable time-step and LTS in ISAT
New reactingFoam tutorial counterFlowFlame2DLTS_GRI_TDAC demonstrates this new
functionality.

Additionally the ISAT table growth algorithm has been further optimized
providing an overall speedup of between 15% and 38% for the tests run so far.

Updates to TDAC and ISAT provided by Francesco Contino.

Implementation updated and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.

Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
2017-01-07 16:29:15 +00:00
Henry Weller
126125c185 Rationalized the keyword to specify a file name in a dictionary to 'file'
e.g. in tutorials/heatTransfer/buoyantSimpleFoam/externalCoupledCavity/0/T

    hot
    {
        type            externalCoupledTemperature;
        commsDir        "${FOAM_CASE}/comms";
        file            "data";
        initByExternal  yes;
        log             true;
        value           uniform 307.75; // 34.6 degC
    }

Previously both 'file' and 'fileName' were used inconsistently in different
classes and given that there is no confusion or ambiguity introduced by using
the simpler 'file' rather than 'fileName' this change simplifies the use and
maintenance of OpenFOAM.
2017-01-07 09:38:54 +00:00
Henry Weller
fa6320d93a Updated tutorial scripts 'createGraphs' and 'patchifyObstacles' for clearer messages
Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=2411
2016-12-27 15:44:30 +00:00
Henry Weller
83f3044db9 tutorials/compressible/rhoSimpleFoam/squareBend: Stabilize by further relaxing e
Patch contributed by Mattijs Janssens
http://bugs.openfoam.org/view.php?id=2382
2016-12-09 16:53:35 +00:00
Henry Weller
7d54e57fa0 Renamed searchableCurve -> searchableExtrudedCircle
to clarify purpose.

Patch contributed by Mattijs Janssens
2016-12-09 16:30:46 +00:00
Henry Weller
d2f6f7e391 tutorials/incompressible/pisoFoam/les/motorBike/motorBike/Allrun: Removed spurious '-parallel' option
Resolves bug-report http://bugs.openfoam.org/view.php?id=2378
2016-12-07 15:39:40 +00:00
Henry Weller
ab760b6cd1 tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoiling.*: Correct q entry
Patch contributed by Mattijs Janssens
2016-12-02 12:22:30 +00:00
Henry Weller
445513a1dc mixerVesselAMI2D/constant/dynamicMeshDict: Removed unused motionSolverLibs entry 2016-12-01 16:13:18 +00:00
Henry Weller
1c687baa35 dynamicMotionSolverListFvMesh: New mesh-motion solver supporting multiple moving regions
e.g. the motion of two counter-rotating AMI regions could be defined:

dynamicFvMesh   dynamicMotionSolverListFvMesh;

solvers
(
    rotor1
    {
        solver solidBody;

        cellZone        rotor1;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         6.2832; // rad/s
        }
    }

    rotor2
    {
        solver solidBody;

        cellZone        rotor2;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         -6.2832; // rad/s
        }
    }
);

Any combination of motion solvers may be selected but there is no special
handling of motion interaction; the motions are applied sequentially and
potentially cumulatively.

To support this new general framework the solidBodyMotionFvMesh and
multiSolidBodyMotionFvMesh dynamicFvMeshes have been converted into the
corresponding motionSolvers solidBody and multiSolidBody and the tutorials
updated to reflect this change e.g. the motion in the mixerVesselAMI2D tutorial
is now defined thus:

dynamicFvMesh   dynamicMotionSolverFvMesh;

solver solidBody;

solidBodyCoeffs
{
    cellZone        rotor;

    solidBodyMotionFunction  rotatingMotion;
    rotatingMotionCoeffs
    {
        origin        (0 0 0);
        axis          (0 0 1);
        omega         6.2832; // rad/s
    }
}
2016-12-01 15:57:15 +00:00
Henry Weller
80db302666 Allwmake: Remove 'set -x' which generates a lot of noise
'set -x' should be used for debugging.

Added command printing into wmake and Allwmake as a replacement for
'set -x' to log current target.
2016-11-13 18:08:22 +00:00
Henry Weller
3ab919d407 paraFoam -block: Added support for vertex and block names
Patch contributed by Mattijs Janssens
2016-11-04 17:29:02 +00:00
Henry Weller
b4b4e1a02c buoyantBoussinesqSimpleFoam: Correct laminar and turbulent Prandtl numberl
Resolves bug-report http://bugs.openfoam.org/view.php?id=2314
2016-11-01 16:07:52 +00:00
Henry Weller
9a155dd0d5 blockMesh: Added edge projection
New functionality contributed by Mattijs Janssens:
  - new edge projection: projectCurve for use with new geometry
    'searchableCurve'
  - new tutorial 'pipe'
  - naming of vertices and blocks (see pipe tutorial). Including back
    substitution for error messages.
2016-10-31 18:00:15 +00:00
Henry Weller
3773db53e9 blockMesh: Added projected vertices and edges
Patch contributed by Mattijs Janssens

    - Added projected vertices
    - Added projected edges
    - Change of blockEdges API (operate on list lambdas)
    - Change of blockFaces API (pass in blockDescriptor and blockFacei)
    - Added sphere7ProjectedEdges tutorial to demonstrate vertex and edge projection
2016-10-18 14:06:23 +01:00
Henry Weller
dccee2bae7 tutorials/mesh/blockMesh/sphere7: New 7-block sphere mesh example
Contributed by Georg Skillas
2016-10-16 15:14:26 +01:00
Henry Weller
009203188f blockMesh: New experimental support for projecting block face point to geometric surfaces
For example, to mesh a sphere with a single block the geometry is defined in the
blockMeshDict as a searchableSurface:

    geometry
    {
        sphere
        {
            type searchableSphere;
            centre (0 0 0);
            radius 1;
        }
    }

The vertices, block topology and curved edges are defined in the usual
way, for example

    v 0.5773502;
    mv -0.5773502;

    a 0.7071067;
    ma -0.7071067;

    vertices
    (
        ($mv $mv $mv)
        ( $v $mv $mv)
        ( $v  $v $mv)
        ($mv  $v $mv)
        ($mv $mv  $v)
        ( $v $mv  $v)
        ( $v  $v  $v)
        ($mv  $v  $v)
    );

    blocks
    (
        hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)
    );

    edges
    (
        arc 0 1 (0 $ma $ma)
        arc 2 3 (0 $a $ma)
        arc 6 7 (0 $a $a)
        arc 4 5 (0 $ma $a)

        arc 0 3 ($ma 0 $ma)
        arc 1 2 ($a 0 $ma)
        arc 5 6 ($a 0 $a)
        arc 4 7 ($ma 0 $a)

        arc 0 4 ($ma $ma 0)
        arc 1 5 ($a $ma 0)
        arc 2 6 ($a $a 0)
        arc 3 7 ($ma $a 0)
    );

which will produce a mesh in which the block edges conform to the sphere
but the faces of the block lie somewhere between the original cube and
the spherical surface which is a consequence of the edge-based
transfinite interpolation.

Now the projection of the block faces to the geometry specified above
can also be specified:

    faces
    (
        project (0 4 7 3) sphere
        project (2 6 5 1) sphere
        project (1 5 4 0) sphere
        project (3 7 6 2) sphere
        project (0 3 2 1) sphere
        project (4 5 6 7) sphere
    );

which produces a mesh that actually conforms to the sphere.

See OpenFOAM-dev/tutorials/mesh/blockMesh/sphere

This functionality is experimental and will undergo further development
and generalization in the future to support more complex surfaces,
feature edge specification and extraction etc.  Please get involved if
you would like to see blockMesh become a more flexible block-structured
mesher.

Henry G. Weller, CFD Direct.
2016-10-13 15:05:24 +01:00
Henry Weller
12d0707b84 foamCleanTutorials: Simplified cleaning the mesh by removing the constant/polyMesh directory 2016-10-13 15:02:32 +01:00
Henry Weller
e08c9ab8b7 reactingTwoPhaseEulerFoam wallBoiling.* tutorials: only run start-up in test-mode 2016-10-11 08:44:36 +01:00
Henry Weller
b92754311a reactingTwoPhaseEulerFoam::IATE: Added phaseChange source
to handle the effect of condensation and evaporation on bubble size
2016-10-07 09:34:35 +01:00
Henry Weller
d6b404dba2 reactingTwoPhaseEulerFoam::IATE: Added wallBoiling sub-model
to handle the size of bubbles created by boiling.  To be used in
conjunction with the alphatWallBoilingWallFunction boundary condition.

The IATE variant of the wallBoiling tutorial case is provided to
demonstrate the functionality:

tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoilingIATE
2016-10-06 12:40:58 +01:00