- use typeHeaderOk<regIOobject>(false) for some generic file existence
checks. Often had something like labelIOField as a placeholder, but
that may be construed to have a particular something.
- this complements the whichPatch(meshFacei) method [binary search]
and the list of patchID() by adding internal range checks.
eg,
Before
~~~~~~
if (facei >= mesh.nInternalFaces() && facei < mesh.nFaces())
{
patchi = pbm.patchID()[facei - mesh.nInternalFaces()];
...
}
After
~~~~~
patchi = pbm.patchID(facei);
if (patchi >= 0)
{
...
}
- skip loading of fields with -no-internal, -no-boundary
- suppress reporting fields with -no-internal, -no-boundary
- cache loaded volume field for reuse with point interpolation.
Trade off some memory overhead against reading twice.
NOTE: this issue will not be evident with foamToEnsight since there
it only handles cell data *or* point data (not both), so a field is
only ever loaded/processed once.
- since ensight format is always float and also always written
component-wise, perform the double -> float narrowing when
extracting the components. This reduces the amount of data
transferred between processors.
ENH: avoid vtk/ensight parallel communication of empty messages
- since ensight writes by element type (eg, tet, hex, polyhedral) the
individual written field sections will tend to be relatively sparse.
Skip zero-size messages, which should help reduce some of the
synchronization bottlenecks.
ENH: use 'data chunking' when writing ensight files in parallel
- since ensight fields are written on a per-element basis, the
corresponding segment can become rather sparsely distributed. With
'data chunking', we attempt to get as many send/recv messages in
before flushing the buffer for writing. This should make the
sequential send/recv less affected by the IO time.
ENH: allow use of an external buffer when writing ensight components
STYLE: remove last vestiges of autoPtr<ensightFile> for output routines
- consistent with sumOp
ENH: globalIndex with gatherNonLocal tag, and use leading dispatch tags
- useful for gather/write where the master data can be written
separately. Leading vs trailing dispatch tags for more similarity to
other C++ conventions.
- replaced ad hoc handling of formatOptions with coordSetWriter and
surfaceWriter helpers.
Accompanying this change, it is now possible to specify "default"
settings to be inherited, format-specific settings and have a
similar layering with surface-specific overrides.
- snappyHexMesh now conforms to setFormats
Eg,
formatOptions
{
default
{
verbose true;
format binary;
}
vtk
{
precision 10;
}
}
surfaces
{
surf1
{
...
formatOptions
{
ensight
{
scale 1000;
}
}
}
}
Header information now includes, e.g.
f [Hz] vs P(f) [Pa]
Lower frequency: 2.500000e+01
Upper frequency: 5.000000e+03
Window model: Hanning
Window number: 2
Window samples: 512
Window overlap %: 5.000000e+01
dBRef : 2.000000e-05
Area average: false
Area sum : 6.475194e-04
Number of faces: 473
Note: output files now have .dat extension
- include -no-libs option by default, similar to '-lib',
which makes it available to all solvers/utilities.
Add argList allowLibs() method to query it.
- relocate with/no functionObjects logic from Time to argList
itself as argList allowFunctionObjects()
- add libs/functionObjects override handling to decomposePar etc
ENH: report the stream relativeName for IOerrors (see c9333a5ac8)
- consistent with defining IO of int32_t/int64_t and with recent
changes to ensightFile. Using the primitives directly instead of
typedefs to them makes the code somewhat less opaque.
STYLE: qualify format/version/compression with IOstreamOption not IOstream
STYLE: reduce number of lookups when scanning {fa,fv}Solution
STYLE: call IOobject::writeEndDivider as static
thermoTools is a relocation of various existing tools:
- src/TurbulenceModels/compressible/turbulentFluidThermoModels/derivedFvPatchFields/
- src/semiPermeableBaffle/derivedFvPatchFields/
- src/thermophysicalModels/thermophysicalPropertiesFvPatchFields/liquidProperties/
ENH: Allwmake: reordering various compilation steps
Co-authored-by: Kutalmis Bercin <kutalmis.bercin@esi-group.com>
- in various situations with mesh regions it is also useful to
filter out or remove the defaultRegion name (ie, "region0").
Can now do that conveniently from the polyMesh itself or as a static
function. Simply use this
const word& regionDir = polyMesh::regionName(regionName);
OR mesh.regionName()
instead of
const word& regionDir =
(
regionName != polyMesh::defaultRegion
? regionName
: word::null
);
Additionally, since the string '/' join operator filters out empty
strings, the following will work correctly:
(polyMesh::regionName(regionName)/polyMesh::meshSubDir)
(mesh.regionName()/polyMesh::meshSubDir)
- previously filtered on the existence of area fields, but with
faMesh::TryNew this is not required anymore.
STYLE: enable -verbose for various parallel utilities (consistency)
- specifies the number of consecutive cells to assign to the same
randomly chosen processor. Can be used to have a less extremely
random distribution for testing possible breaking points.
Eg,
method random;
coeffs
{
agglom 4;
}
- Add finiteArea cellID (actually face ids) / faceLabel and procID
for foamToVTK with -write-ids. Useful when this type of information
is needed.
- bundles frequently used 'gather/scatter' patterns more consistently.
- combineAllGather -> combineGather + broadcast
- listCombineAllGather -> listCombineGather + broadcast
- mapCombineAllGather -> mapCombineGather + broadcast
- allGatherList -> gatherList + scatterList
- reduce -> gather + broadcast (ie, allreduce)
- The allGatherList currently wraps gatherList/scatterList, but may be
replaced with a different algorithm in the future.
STYLE: PstreamCombineReduceOps.H is mostly unneeded now
- also disables PointData if manifold cells are detected.
This is a partial workaround for volPointInterpolation problems
with handling manifold cells.
- additional verbosity option for conversions
- ignore old `-finite-area` option and always convert available
finiteArea mesh/fields unless `-no-finite-area` is specified (#2374)
ENH: simplify point offset handling for ensight output
- extend writing to include compact face/cell lists
- a try/catch approach is not really robust enough (or even possible)
since read failures likely do not occur on all ranks simultaneously.
This leads to situations where the master has thrown an exception
(and thus exiting the current routine) while other ranks are still
waiting to receive data and the program blocks completely.
Since this primarily affects data conversion routines such as
foamToEnsight etc, treat similarly to lagrangian: check for the
existence of essential files before proceeding or not. This is
wrapped into a TryNew factory method:
autoPtr<faMesh> faMeshPtr(faMesh::TryNew(mesh));
if (faMeshPtr) ...
- the very old 'writer' class was fully stateless and always templated
on an particular output type.
This is now replaced with a 'coordSetWriter' with similar concepts
as previously introduced for surface writers (#1206).
- writers change from being a generic state-less set of routines to
more properly conforming to the normal notion of a writer.
- Parallel data is done *outside* of the writers, since they are used
in a wide variety of contexts and the caller is currently still in
a better position for deciding how to combine parallel data.
ENH: update sampleSets to sample on per-field basis (#2347)
- sample/write a field in a single step.
- support for 'sampleOnExecute' to obtain values at execution
intervals without writing.
- support 'sets' input as a dictionary entry (as well as a list),
which is similar to the changes for sampled-surface and permits use
of changeDictionary to modify content.
- globalIndex for gather to reduce parallel communication, less code
- qualify the sampleSet results (properties) with the name of the set.
The sample results were previously without a qualifier, which meant
that only the last property value was actually saved (previous ones
overwritten).
For example,
```
sample1
{
scalar
{
average(line,T) 349.96521;
min(line,T) 349.9544281;
max(line,T) 350;
average(cells,T) 349.9854619;
min(cells,T) 349.6589286;
max(cells,T) 350.4967271;
average(line,epsilon) 0.04947733869;
min(line,epsilon) 0.04449639927;
max(line,epsilon) 0.06452856475;
}
label
{
size(line,T) 79;
size(cells,T) 1720;
size(line,epsilon) 79;
}
}
```
ENH: update particleTracks application
- use globalIndex to manage original parcel addressing and
for gathering. Simplify code by introducing a helper class,
storing intermediate fields in hash tables instead of
separate lists.
ADDITIONAL NOTES:
- the regionSizeDistribution largely retains separate writers since
the utility of placing sum/dev/count for all fields into a single file
is questionable.
- the streamline writing remains a "soft" upgrade, which means that
scalar and vector fields are still collected a priori and not
on-the-fly. This is due to how the streamline infrastructure is
currently handled (should be upgraded in the future).
GIT: relocate globalIndex (is independent of mesh)
STYLE: include label/scalar Fwd in contiguous.H
STYLE: unneed commSchedule include in GeometricField
- do not need STRINGIFY macros in ragel code
- remove wordPairHashTable.H and use equivalent wordPairHashes.H instead
STYLE: replace addDictOption with explicit option
- the usage text is otherwise misleading
GIT: combine Pair/Tuple2 directories
- set() was silently deprecated in favour of reset() FEB-2018
since the original additional check for overwriting an existing
pointer was never used. The reset(...) name is more consistent
with unique_ptr, tmp etc.
Now emit deprecations for set().
- use direct test for autoPtr, tmp instead of valid() method.
More consistent with unique_ptr etc.
STYLE: eliminate redundant ptr() use on cloned quantities
The utility will now add field data to all tracks (previous version only
created the geometry)
The new 'fields' entry can be used to output specific fields.
Example
cloud reactingCloud1;
sampleFrequency 1;
maxPositions 1000000;
fields (d U); // includes wildcard support
STYLE: minor typo fix
- similar to -dry-run handling, can be interrogated from argList,
which makes it simpler to add into utilities.
- support multiple uses of -dry-run and -verbose to increase the
level. For example, could have
someApplication -verbose -verbose
and inside of the application:
if (args.verbose() > 2) ...
BUG: error with empty distributed roots specification (fixes#2196)
- previously used the size of distributed roots to transmit if the
case was running in distributed mode, but this behaves rather poorly
with bad input. Specifically, the following questionable setup:
distributed true;
roots ( /*none*/ );
Now transmit the ParRunControl distributed() value instead,
and also emit a gentle warning for the user:
WARNING: running distributed but did not specify roots!
- argList::envExecutable() static method.
This is identical to getEnv("FOAM_EXECUTABLE"), where the name of
the executable has typically been set from the argList construction.
Provides a singleton access to this value from locations that
do not have knowledge of the originating command args (argList).
This is a similar rationale as for the argList::envGlobalPath() static.
- additional argList::envRelativePath() static method.
- make -dry-run handling more central and easier to use by adding into
argList itself.
STYLE: drop handling of -srcDoc (v1706 option)
- replaced with -doc-source for 1712 and never used much anyhow
- previously used an indirect patch to get the sampling locations,
but this doesn't take account of the face flips. Now use
the faceZone intrinsic for generating a properly flipped patch
and provide the sampling locations separately.
STYLE: adjust compatiblity header for surfaceMeshWriter