Commit Graph

13 Commits

Author SHA1 Message Date
Mark Olesen
8a70c898ae STYLE: make IOobject time() noexcept. Use explicit REGISTER/NO_REGISTER 2023-01-23 14:52:29 +01:00
Mark Olesen
ba8d6bddcc ENH: use singleton method for accessing runtime selection
STYLE: use alias to mark partialFaceAreaWeightAMI deprecation after v2012
2021-11-05 17:21:27 +01:00
Vaggelis Papoutsis
9ca6e4a548 COMP: objectiveManager::write was hiding regIOobject::write (see #2005) 2021-03-05 12:35:32 +00:00
Vaggelis Papoutsis
4981061c09 ENH: objectiveManager now writes the weighted objective function
to files, if the corresponding adjoint solver has more than one
objectives.
2020-12-11 17:21:38 +00:00
Andrew Heather
d6104bd497 INT: Minor integration updates 2020-06-12 15:01:09 +01:00
Vaggelis Papoutsis
6ee7bc66c5 ENH: added a general framework for normalization and setting targets
for all objective functions.

- The normalization is useful for practically all update methods dealing
with constraints (e.g. SQP, MMA). The normalization factor can be either
given explicitly or, if not given, will be the value of the objective
function in the first optimisation cycle.
- The target value is useful when using the objective as a constraint in
constrained optimisation problems (e.g. drag - dragTarget). It should
only be used with update methods that understand the value of the
constraint (e.g. SQP, MMA) but not when the objective in hand is the
only objective of the optimisation problem. In such a case, a squared
objective should be used (e.g. sqr(drag - dragTarget))
2020-06-12 13:27:55 +01:00
Vaggelis Papoutsis
db8a840459 COMP: BFGS and SR1 failed to compile with SP
- Failed due to double*Matrix<float> multiplication.

Style changes

- use SquareMatrix with Identity on construction

- use Zero in constructors

- remove trailing space and semi-colons
2019-12-12 11:40:01 -05:00
Vaggelis Papoutsis
b863254308 ENH: New adjont shape optimisation functionality
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops.  A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2].  The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.

The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.

The software was developed by PCOpt/NTUA and FOSS GP, with contributions from

Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather

[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C.  Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous  Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015

[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K.  Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019
2019-12-12 14:17:29 +00:00
Andrew Heather
fdf8d10ab4 Merge commit 'e9219558d7' into develop-v1906 2019-12-05 11:47:19 +00:00
OpenFOAM bot
e9219558d7 GIT: Header file updates 2019-10-31 14:48:44 +00:00
Mark Olesen
f94be1bebb ENH: use FatalIOErrorInLookup instead of FatalErrorInLookup 2019-07-16 10:26:51 +02:00
Mark Olesen
fb09f56aba ENH: use FatalErrorInLookup macros (#1362) 2019-07-12 18:00:00 +02:00
Vaggelis Papoutsis
ecc1fb5efb CONTRIB: New adjoint optimisation and tools
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.

Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].

Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].

The software was developed by PCOpt/NTUA and FOSS GP, with contributions from

Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather

and contributions in earlier version from

Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou

[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.

[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.

[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.

Integration into the official OpenFOAM release by OpenCFD
2019-06-17 12:59:11 +01:00