/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2019-2021 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Description Simple field tests Test use of Kahan/Neumaier to extend precision for when running SPDP mode. Conclusion is that it is easier/quicker to run these summation loops as double precision (i.e. solveScalar). \*---------------------------------------------------------------------------*/ #include "primitiveFields.H" #include "IOstreams.H" using namespace Foam; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // template void sumNeumaier ( const UList& vals, const CombineOp& cop, ResultType& result ) { // Neumaier version of Kahan ResultType sum = Zero; ResultType c = Zero; for (const Type& vali : vals) { ResultType val; cop(val, vali); const ResultType t = sum + val; for ( direction cmpt = 0; cmpt < pTraits::nComponents; cmpt++ ) { if (mag(sum[cmpt]) >= mag(val[cmpt])) { // If sum is bigger, low-order digits of input[i] are lost. c[cmpt] += (sum[cmpt] - t[cmpt]) + val[cmpt]; } else { // Else low-order digits of sum are lost. c[cmpt] += (val[cmpt] - t[cmpt]) + sum[cmpt]; } } sum = t; } result = sum + c; } template void sumNeumaier ( const UList& vals, const CombineOp& cop, ResultType& result ) { // Neumaier version of Kahan ResultType sum = Zero; ResultType c = Zero; for (const scalar vali : vals) { ResultType val; cop(val, vali); const ResultType t = sum + val; if (mag(sum) >= mag(val)) { // If sum is bigger, low-order digits of input[i] are lost. c += (sum - t) + val; } else { // Else low-order digits of sum are lost. c += (val - t) + sum; } sum = t; } result = sum + c; } template Type mySum(const UList& f) { typedef typename Foam::typeOfSolve::type solveType; solveType Sum = Zero; if (f.size()) { sumNeumaier(f, eqOp(), Sum); } return Type(Sum); } //- The sumSqr always adds only positive numbers. Here there can never be any // cancellation of truncation errors. template typename outerProduct1::type mySumSqr(const UList& f) { typedef typename outerProduct1::type prodType; prodType result = Zero; if (f.size()) { sumNeumaier(f, eqSqrOp(), result); } return result; } // Main program: int main(int argc, char *argv[]) { scalarField sfield(10, one{}); forAll(sfield, i) { sfield[i] = (i % 4) ? i : 0; } Info<< "scalarField: " << sfield << nl; sfield.negate(); Info<< "negated: " << sfield << nl; // Does not compile (ambiguous) // boolField lfield(10, one{}); boolField lfield(10, true); forAll(lfield, i) { lfield[i] = (i % 4) ? i : 0; } Info<< "boolField: " << lfield << nl; lfield.negate(); Info<< "negated: " << lfield << nl; // Summation (compile in SPDP) // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pout.precision(16); Sout.precision(16); const scalar SMALLS(1e-6); const scalar GREATS(1e6); // scalarField summation { scalarField sfield(10, SMALLS); sfield[8] = GREATS; sfield[9] = -sfield[8]; Info<< "scalarField:" << sfield.size() << nl << " sum :" << sum(sfield) << nl << " corrected:" << mySum(sfield) << endl; } // vectorField summation { vectorField vfield(10, vector::uniform(SMALLS)); vfield[8] = vector::uniform(GREATS); vfield[9] = -vfield[8]; Info<< "vectorField:" << vfield.size() << nl << " sum :" << sum(vfield) << nl << " corrected:" << mySum(vfield) << endl; } // sphericalTensorField summation { sphericalTensorField tfield(10, sphericalTensor(SMALLS)); tfield[8] = sphericalTensor(GREATS); tfield[9] = -tfield[8]; Info<< "sphericalTensorField:" << tfield.size() << nl << " sum :" << sum(tfield) << nl << " corrected:" << mySum(tfield) << endl; } // symmTensorField summation { symmTensorField tfield(10, SMALLS*symmTensor::I); tfield[8] = GREATS*symmTensor::I; tfield[9] = -tfield[8]; Info<< "symmTensorField:" << tfield.size() << nl << " sum :" << sum(tfield) << nl << " corrected:" << mySum(tfield) << endl; } // tensorField summation { tensorField tfield(10, SMALLS*tensor::I); tfield[8] = GREATS*tensor::I; tfield[9] = -tfield[8]; Info<< "tensorField:" << tfield.size() << nl << " sum :" << sum(tfield) << nl << " corrected:" << mySum(tfield) << endl; } return 0; } // ************************************************************************* //