/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Class
Foam::CoBlended
Description
Two-scheme Courant number based blending differencing scheme.
Similar to localBlended but uses a blending factor computed from the
face-based Courant number and the lower and upper Courant number limits
supplied:
\f[
weight = 1 - max(min((Co - Co1)/(Co2 - Co1), 1), 0)
\f]
where
\vartable
Co1 | Courant number below which scheme1 is used
Co2 | Courant number above which scheme2 is used
\endvartable
The weight applies to the first scheme and 1-weight to the second scheme.
Example of the CoBlended scheme specification using LUST for Courant numbers
less than 1 and linearUpwind for Courant numbers greater than 10:
\verbatim
divSchemes
{
.
.
div(phi,U) Gauss CoBlended 1 LUST grad(U) 10 linearUpwind grad(U);
.
.
}
\endverbatim
SourceFiles
CoBlended.C
\*---------------------------------------------------------------------------*/
#ifndef CoBlended_H
#define CoBlended_H
#include "surfaceInterpolationScheme.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class CoBlended Declaration
\*---------------------------------------------------------------------------*/
template
class CoBlended
:
public surfaceInterpolationScheme
{
// Private data
//- Courant number below which scheme1 is used
const scalar Co1_;
//- Scheme 1
tmp > tScheme1_;
//- Courant number above which scheme2 is used
const scalar Co2_;
//- Scheme 2
tmp > tScheme2_;
//- The face-flux used to compute the face Courant number
const surfaceScalarField& faceFlux_;
// Private Member Functions
//- Disallow default bitwise copy construct
CoBlended(const CoBlended&);
//- Disallow default bitwise assignment
void operator=(const CoBlended&);
public:
//- Runtime type information
TypeName("CoBlended");
// Constructors
//- Construct from mesh and Istream.
// The name of the flux field is read from the Istream and looked-up
// from the mesh objectRegistry
CoBlended
(
const fvMesh& mesh,
Istream& is
)
:
surfaceInterpolationScheme(mesh),
Co1_(readScalar(is)),
tScheme1_
(
surfaceInterpolationScheme::New(mesh, is)
),
Co2_(readScalar(is)),
tScheme2_
(
surfaceInterpolationScheme::New(mesh, is)
),
faceFlux_
(
mesh.lookupObject
(
word(is)
)
)
{
if (Co1_ < 0 || Co2_ < 0 || Co1_ >= Co2_)
{
FatalIOErrorIn("CoBlended(const fvMesh&, Istream&)", is)
<< "coefficients = " << Co1_ << " and " << Co2_
<< " should be > 0 and Co2 > Co1"
<< exit(FatalIOError);
}
}
//- Construct from mesh, faceFlux and Istream
CoBlended
(
const fvMesh& mesh,
const surfaceScalarField& faceFlux,
Istream& is
)
:
surfaceInterpolationScheme(mesh),
Co1_(readScalar(is)),
tScheme1_
(
surfaceInterpolationScheme::New(mesh, faceFlux, is)
),
Co2_(readScalar(is)),
tScheme2_
(
surfaceInterpolationScheme::New(mesh, faceFlux, is)
),
faceFlux_(faceFlux)
{
if (Co1_ < 0 || Co2_ < 0 || Co1_ >= Co2_)
{
FatalIOErrorIn("CoBlended(const fvMesh&, Istream&)", is)
<< "coefficients = " << Co1_ << " and " << Co2_
<< " should be > 0 and Co2 > Co1"
<< exit(FatalIOError);
}
}
// Member Functions
//- Return the face-based Courant number blending factor
tmp blendingFactor() const
{
const fvMesh& mesh = faceFlux_.mesh();
return
(
scalar(1) -
max
(
min
(
(
mesh.time().deltaT()*mesh.deltaCoeffs()
*mag(faceFlux_)/mesh.magSf()
- Co1_
)/(Co2_ - Co1_),
scalar(1)
),
scalar(0)
)
);
}
//- Return the interpolation weighting factors
tmp
weights
(
const GeometricField& vf
) const
{
surfaceScalarField bf(blendingFactor());
Info<< "weights " << max(bf) << " " << min(bf) << endl;
return
bf*tScheme1_().weights(vf)
+ (scalar(1.0) - bf)*tScheme2_().weights(vf);
}
//- Return the face-interpolate of the given cell field
// with explicit correction
tmp >
interpolate
(
const GeometricField& vf
) const
{
surfaceScalarField bf(blendingFactor());
return
bf*tScheme1_().interpolate(vf)
+ (scalar(1.0) - bf)*tScheme2_().interpolate(vf);
}
//- Return true if this scheme uses an explicit correction
virtual bool corrected() const
{
return tScheme1_().corrected() || tScheme2_().corrected();
}
//- Return the explicit correction to the face-interpolate
// for the given field
virtual tmp >
correction
(
const GeometricField& vf
) const
{
surfaceScalarField bf(blendingFactor());
if (tScheme1_().corrected())
{
if (tScheme2_().corrected())
{
return
(
bf
* tScheme1_().correction(vf)
+ (scalar(1.0) - bf)
* tScheme2_().correction(vf)
);
}
else
{
return
(
bf
* tScheme1_().correction(vf)
);
}
}
else if (tScheme2_().corrected())
{
return
(
(scalar(1.0) - bf)
* tScheme2_().correction(vf)
);
}
else
{
return tmp >
(
NULL
);
}
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //