#include "createRDeltaT.H" Info<< "Reading field p_rgh\n" << endl; volScalarField p_rgh ( IOobject ( "p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); #include "createPhi.H" Info<< "Constructing twoPhaseMixtureThermo\n" << endl; twoPhaseMixtureThermo mixture(U, phi); volScalarField& alpha1(mixture.alpha1()); volScalarField& alpha2(mixture.alpha2()); Info<< "Reading thermophysical properties\n" << endl; const volScalarField& rho1 = mixture.thermo1().rho(); const volScalarField& rho2 = mixture.thermo2().rho(); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE ), alpha1*rho1 + alpha2*rho2 ); dimensionedScalar pMin ( "pMin", dimPressure, mixture ); mesh.setFluxRequired(p_rgh.name()); mesh.setFluxRequired(alpha1.name()); #include "readGravitationalAcceleration.H" #include "readhRef.H" #include "gh.H" // Mass flux // Initialisation does not matter because rhoPhi is reset after the // alpha1 solution before it is used in the U equation. surfaceScalarField rhoPhi ( IOobject ( "rhoPhi", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), fvc::interpolate(rho)*phi ); volScalarField dgdt ( pos(alpha2)*fvc::div(phi)/max(alpha2, scalar(0.0001)) ); // Construct compressible turbulence model autoPtr turbulence ( compressible::turbulenceModel::New(rho, U, rhoPhi, mixture) ); Info<< "Creating field kinetic energy K\n" << endl; volScalarField K("K", 0.5*magSqr(U)); #include "createMRF.H"