/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016-2017 DHI
Copyright (C) 2017-2020 OpenCFD Ltd.
Copyright (c) 2017-2020, German Aerospace Center (DLR)
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Application
setAlphaField
Description
Uses cutCellIso to create a volume fraction field from either a cylinder,
a sphere or a plane.
Original code supplied by Johan Roenby, DHI (2016)
Modification Henning Scheufler, DLR (2019)
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "triSurface.H"
#include "triSurfaceTools.H"
#include "implicitFunction.H"
#include "cutCellIso.H"
#include "OBJstream.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void isoFacesToFile
(
const DynamicList>& faces,
const word& fileName
)
{
// Writing isofaces to OBJ file for inspection in paraview
OBJstream os(fileName + ".obj");
if (Pstream::parRun())
{
// Collect points from all the processors
List>> allProcFaces(Pstream::nProcs());
allProcFaces[Pstream::myProcNo()] = faces;
Pstream::gatherList(allProcFaces);
if (Pstream::master())
{
Info<< "Writing file: " << fileName << endl;
for (const DynamicList>& procFaces : allProcFaces)
{
for (const List& facePts : procFaces)
{
os.write(face(identity(facePts.size())), facePts);
}
}
}
}
else
{
Info<< "Writing file: " << fileName << endl;
for (const List& facePts : faces)
{
os.write(face(identity(facePts.size())), facePts);
}
}
}
int main(int argc, char *argv[])
{
argList::addNote
(
"Uses cutCellIso to create a volume fraction field from an "
"implicit function."
);
#include "addDictOption.H"
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
const word dictName("setAlphaFieldDict");
#include "setSystemMeshDictionaryIO.H"
IOdictionary setAlphaFieldDict(dictIO);
Info<< "Reading " << setAlphaFieldDict.name() << endl;
const word fieldName = setAlphaFieldDict.get("field");
const bool invert = setAlphaFieldDict.getOrDefault("invert", false);
const bool writeOBJ = setAlphaFieldDict.getOrDefault("writeOBJ", false);
Info<< "Reading field " << fieldName << nl << endl;
volScalarField alpha1
(
IOobject
(
fieldName,
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
autoPtr func = implicitFunction::New
(
setAlphaFieldDict.get("type"),
setAlphaFieldDict
);
scalarField f(mesh.nPoints(), Zero);
forAll(f, pi)
{
f[pi] = func->value(mesh.points()[pi]);
};
cutCellIso cutCell(mesh, f);
DynamicList> facePts;
DynamicList surface;
surfaceScalarField cellToCellDist(mag(mesh.delta()));
forAll(alpha1, cellI)
{
label cellStatus = cutCell.calcSubCell(cellI, 0.0);
if (cellStatus == -1)
{
alpha1[cellI] = 1;
}
else if (cellStatus == 1)
{
alpha1[cellI] = 0;
}
else if (cellStatus == 0)
{
if (mag(cutCell.faceArea()) != 0)
{
alpha1[cellI] = max(min(cutCell.VolumeOfFluid(), 1), 0);
if (writeOBJ && (mag(cutCell.faceArea()) >= 1e-14))
{
facePts.append(cutCell.facePoints());
}
}
}
}
if (writeOBJ)
{
isoFacesToFile(facePts, fieldName + "0");
}
ISstream::defaultPrecision(18);
if (invert)
{
alpha1 = scalar(1) - alpha1;
}
alpha1.correctBoundaryConditions();
Info<< "Writing new alpha field " << alpha1.name() << endl;
alpha1.write();
const scalarField& alpha = alpha1.internalField();
Info<< "sum(alpha*V):" << gSum(mesh.V()*alpha)
<< ", 1-max(alpha1): " << 1 - gMax(alpha)
<< " min(alpha1): " << gMin(alpha) << endl;
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //