Info<< "Reading field pd\n" << endl; volScalarField pd ( IOobject ( "pd", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field gamma\n" << endl; volScalarField gamma ( IOobject ( "gamma", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); # include "createPhi.H" Info<< "Reading transportProperties\n" << endl; twoPhaseMixture twoPhaseProperties(U, phi, "gamma"); const dimensionedScalar& rho1 = twoPhaseProperties.rho1(); const dimensionedScalar& rho2 = twoPhaseProperties.rho2(); // Need to store rho for ddt(rho, U) volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::READ_IF_PRESENT ), gamma*rho1 + (scalar(1) - gamma)*rho2, gamma.boundaryField().types() ); rho.oldTime(); // Mass flux // Initialisation does not matter because rhoPhi is reset after the // gamma solution before it is used in the U equation. surfaceScalarField rhoPhi ( IOobject ( "rho*phi", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), rho1*phi ); // Construct interface from gamma distribution interfaceProperties interface(gamma, U, twoPhaseProperties); // Construct LES model autoPtr turbulence ( turbulenceModel::New(U, phi, twoPhaseProperties) ); wordList pcorrTypes(pd.boundaryField().types()); for (label i=0; i pRefProbe; label pdRefCell = 0; scalar pdRefValue = 0.0; scalar pRefValue = 0.0; if (pd.needReference()) { pRefProbe.set ( new probes ( "pRefProbe", mesh, mesh.solutionDict().subDict("PISO").subDict("pRefProbe") ) ); pRefValue = readScalar ( mesh.solutionDict().subDict("PISO").lookup("pRefValue") ); pdRefCell = pRefProbe->cells()[0]; p += dimensionedScalar ( "p", p.dimensions(), pRefValue - pRefProbe->sample("p")()[0] ); }