/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "MapLagrangianFields.H" #include "passiveParticleCloud.H" #include "meshSearch.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { static const scalar perturbFactor = 1e-6; // Special version of findCell that generates a cell guaranteed to be // compatible with tracking. static label findCell(const Cloud& cloud, const point& pt) { label cellI = -1; label tetFaceI = -1; label tetPtI = -1; const polyMesh& mesh = cloud.pMesh(); mesh.findCellFacePt(pt, cellI, tetFaceI, tetPtI); if (cellI >= 0) { return cellI; } else { // See if particle on face by finding nearest face and shifting // particle. meshSearch meshSearcher ( mesh, polyMesh::FACE_PLANES // no decomposition needed ); label faceI = meshSearcher.findNearestBoundaryFace(pt); if (faceI >= 0) { const point& cc = mesh.cellCentres()[mesh.faceOwner()[faceI]]; const point perturbPt = (1-perturbFactor)*pt+perturbFactor*cc; mesh.findCellFacePt(perturbPt, cellI, tetFaceI, tetPtI); return cellI; } } return -1; } void mapLagrangian(const meshToMesh0& meshToMesh0Interp) { // Determine which particles are in meshTarget // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // target to source cell map const labelList& cellAddressing = meshToMesh0Interp.cellAddressing(); // Invert celladdressing to get source to target(s). // Note: could use sparse addressing but that is too storage inefficient // (Map) labelListList sourceToTargets ( invertOneToMany(meshToMesh0Interp.fromMesh().nCells(), cellAddressing) ); const fvMesh& meshSource = meshToMesh0Interp.fromMesh(); const fvMesh& meshTarget = meshToMesh0Interp.toMesh(); const pointField& targetCc = meshTarget.cellCentres(); fileNameList cloudDirs ( readDir ( meshSource.time().timePath()/cloud::prefix, fileName::DIRECTORY ) ); forAll(cloudDirs, cloudI) { // Search for list of lagrangian objects for this time IOobjectList objects ( meshSource, meshSource.time().timeName(), cloud::prefix/cloudDirs[cloudI] ); IOobject* positionsPtr = objects.lookup("positions"); if (positionsPtr) { Info<< nl << " processing cloud " << cloudDirs[cloudI] << endl; // Read positions & cell passiveParticleCloud sourceParcels ( meshSource, cloudDirs[cloudI], false ); Info<< " read " << sourceParcels.size() << " parcels from source mesh." << endl; // Construct empty target cloud passiveParticleCloud targetParcels ( meshTarget, cloudDirs[cloudI], IDLList() ); particle::TrackingData td(targetParcels); label sourceParticleI = 0; // Indices of source particles that get added to targetParcels DynamicList