/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2017-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Application
surfaceTransformPoints
Group
grpSurfaceUtilities
Description
Transform (scale/rotate) a surface.
Like transformPoints but for surfaces.
The rollPitchYaw and yawPitchRoll options take three angles (degrees)
that describe the intrinsic Euler rotation.
rollPitchYaw
- roll (rotation about X) followed by
- pitch (rotation about Y) followed by
- yaw (rotation about Z)
yawPitchRoll
- yaw (rotation about Z) followed by
- pitch (rotation about Y) followed by
- roll (rotation about X)
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Fstream.H"
#include "boundBox.H"
#include "transformField.H"
#include "Pair.H"
#include "Tuple2.H"
#include "axisAngleRotation.H"
#include "EulerCoordinateRotation.H"
#include "MeshedSurfaces.H"
using namespace Foam;
using namespace Foam::coordinateRotations;
static word getExtension(const fileName& name)
{
word ext(name.ext());
if (ext == "gz")
{
ext = name.lessExt().ext();
}
return ext;
}
// Non-short-circuiting check to get all warnings
static bool hasReadWriteTypes(const word& readType, const word& writeType)
{
volatile bool good = true;
if (!meshedSurface::canReadType(readType, true))
{
good = false;
}
if (!meshedSurface::canWriteType(writeType, true))
{
good = false;
}
return good;
}
// Retrieve scaling option
// - size 0 : no scaling
// - size 1 : uniform scaling
// - size 3 : non-uniform scaling
List getScalingOpt(const word& optName, const argList& args)
{
// readListIfPresent handles single or multiple values
// - accept 1 or 3 values
List scaling;
args.readListIfPresent(optName, scaling);
if (scaling.size() == 1)
{
// Uniform scaling
}
else if (scaling.size() == 3)
{
// Non-uniform, but may actually be uniform
if
(
equal(scaling[0], scaling[1])
&& equal(scaling[0], scaling[2])
)
{
scaling.resize(1);
}
}
else if (!scaling.empty())
{
FatalError
<< "Incorrect number of components, must be 1 or 3." << nl
<< " -" << optName << ' ' << args[optName].c_str() << endl
<< exit(FatalError);
}
if (scaling.size() == 1 && equal(scaling[0], 1))
{
// Scale factor 1 == no scaling
scaling.clear();
}
// Zero and negative scaling are permitted
return scaling;
}
void applyScaling(pointField& points, const List& scaling)
{
if (scaling.size() == 1)
{
Info<< "Scaling points uniformly by " << scaling[0] << nl;
points *= scaling[0];
}
else if (scaling.size() == 3)
{
Info<< "Scaling points by ("
<< scaling[0] << ' '
<< scaling[1] << ' '
<< scaling[2] << ')' << nl;
points.replace(vector::X, scaling[0]*points.component(vector::X));
points.replace(vector::Y, scaling[1]*points.component(vector::Y));
points.replace(vector::Z, scaling[2]*points.component(vector::Z));
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transform (translate / rotate / scale) surface points.\n"
"Like transformPoints but for surfaces.\n"
"Note: roll=rotate about x, pitch=rotate about y, yaw=rotate about z"
);
argList::noParallel();
argList::addArgument("input", "The input surface file");
argList::addArgument("output", "The output surface file");
argList::addBoolOption
(
"recentre",
"Recentre the bounding box before other operations"
);
argList::addOption
(
"translate",
"vector",
"Translate by specified before rotations"
);
argList::addBoolOption
(
"auto-centre",
"Use bounding box centre as centre for rotations"
);
argList::addOption
(
"centre",
"point",
"Use specified as centre for rotations"
);
argList::addOptionCompat("auto-centre", {"auto-origin", 2206});
argList::addOptionCompat("centre", {"origin", 2206});
argList::addOption
(
"rotate",
"(vectorA vectorB)",
"Rotate from to - eg, '((1 0 0) (0 0 1))'"
);
argList::addOption
(
"rotate-angle",
"(vector scalar)",
"Rotate degrees about - eg, '((1 0 0) 45)'"
);
argList::addOption
(
"rollPitchYaw",
"vector",
"Rotate by '(roll pitch yaw)' degrees"
);
argList::addOption
(
"yawPitchRoll",
"vector",
"Rotate by '(yaw pitch roll)' degrees"
);
argList::addOption
(
"read-scale",
"scalar | vector",
"Uniform or non-uniform input scaling"
);
argList::addOption
(
"write-scale",
"scalar | vector",
"Uniform or non-uniform output scaling"
);
argList::addOption
(
"read-format",
"type",
"Input format (default: use file extension)"
);
argList::addOption
(
"write-format",
"type",
"Output format (default: use file extension)"
);
// Backward compatibility and with transformPoints
argList::addOptionCompat("write-scale", {"scale", -2006});
argList args(argc, argv);
// Verify that an operation has been specified
{
const List operationNames
{
"recentre",
"translate",
"rotate",
"rotate-angle",
"rollPitchYaw",
"yawPitchRoll",
"read-scale",
"write-scale"
};
if (!args.count(operationNames))
{
FatalError
<< "No operation supplied, "
<< "use at least one of the following:" << nl
<< " ";
for (const auto& opName : operationNames)
{
FatalError
<< " -" << opName;
}
FatalError
<< nl << exit(FatalError);
}
}
const auto importName = args.get(1);
const auto exportName = args.get(2);
const word readFileType
(
args.getOrDefault("read-format", getExtension(importName))
);
const word writeFileType
(
args.getOrDefault("write-format", getExtension(exportName))
);
// Check that reading/writing is supported
if (!hasReadWriteTypes(readFileType, writeFileType))
{
FatalError
<< "Unsupported file format(s)" << nl
<< exit(FatalError);
}
Info<< "Reading surf from " << importName << " ..." << nl
<< "Writing surf to " << exportName << " ..." << endl;
meshedSurface surf1(importName, readFileType);
pointField points(surf1.points());
// Begin operations
// Input scaling
applyScaling(points, getScalingOpt("read-scale", args));
vector v;
if (args.found("recentre"))
{
v = boundBox(points).centre();
Info<< "Adjust centre " << v << " -> (0 0 0)" << endl;
points -= v;
}
if (args.readIfPresent("translate", v))
{
Info<< "Translating points by " << v << endl;
points += v;
}
vector rotationCentre;
bool useRotationCentre = args.readIfPresent("centre", rotationCentre);
if (args.found("auto-centre") && !useRotationCentre)
{
useRotationCentre = true;
rotationCentre = boundBox(points).centre();
}
if (useRotationCentre)
{
Info<< "Set centre of rotation to " << rotationCentre << endl;
points -= rotationCentre;
}
if (args.found("rotate"))
{
Pair n1n2
(
args.lookup("rotate")()
);
n1n2[0].normalise();
n1n2[1].normalise();
const tensor rot(rotationTensor(n1n2[0], n1n2[1]));
Info<< "Rotating points by " << rot << endl;
points = transform(rot, points);
}
else if (args.found("rotate-angle"))
{
const Tuple2 rotAxisAngle
(
args.lookup("rotate-angle")()
);
const vector& axis = rotAxisAngle.first();
const scalar angle = rotAxisAngle.second();
Info<< "Rotating points " << nl
<< " about " << axis << nl
<< " angle " << angle << nl;
const tensor rot(axisAngle::rotation(axis, angle, true));
Info<< "Rotating points by " << rot << endl;
points = transform(rot, points);
}
else if (args.readIfPresent("rollPitchYaw", v))
{
Info<< "Rotating points by" << nl
<< " roll " << v.x() << nl
<< " pitch " << v.y() << nl
<< " yaw " << v.z() << nl;
const tensor rot(euler::rotation(euler::eulerOrder::XYZ, v, true));
Info<< "Rotating points by " << rot << endl;
points = transform(rot, points);
}
else if (args.readIfPresent("yawPitchRoll", v))
{
Info<< "Rotating points by" << nl
<< " yaw " << v.x() << nl
<< " pitch " << v.y() << nl
<< " roll " << v.z() << nl;
const tensor rot(euler::rotation(euler::eulerOrder::ZYX, v, true));
Info<< "Rotating points by " << rot << endl;
points = transform(rot, points);
}
if (useRotationCentre)
{
Info<< "Unset centre of rotation from " << rotationCentre << endl;
points += rotationCentre;
}
// Output scaling
applyScaling(points, getScalingOpt("write-scale", args));
surf1.movePoints(points);
surf1.write(exportName, writeFileType);
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //