/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation \\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application applyBoundaryLayer Description Apply a simplified boundary-layer model to the velocity and turbulence fields based on the 1/7th power-law. The uniform boundary-layer thickness is either provided via the -ybl option or calculated as the average of the distance to the wall scaled with the thickness coefficient supplied via the option -Cbl. If both options are provided -ybl is used. Compressible modes is automatically selected based on the existence of the "thermophysicalProperties" dictionary required to construct the thermodynamics package. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "singlePhaseTransportModel.H" #include "turbulentTransportModel.H" #include "turbulentFluidThermoModel.H" #include "wallDist.H" #include "processorFvPatchField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // turbulence constants - file-scope static const scalar Cmu(0.09); static const scalar kappa(0.41); void correctProcessorPatches(volScalarField& vf) { if (!Pstream::parRun()) { return; } // Not possible to use correctBoundaryConditions on fields as they may // use local info as opposed to the constraint values employed here, // but still need to update processor patches volScalarField::GeometricBoundaryField& bf = vf.boundaryField(); forAll(bf, patchI) { if (isA >(bf[patchI])) { bf[patchI].initEvaluate(); } } forAll(bf, patchI) { if (isA >(bf[patchI])) { bf[patchI].evaluate(); } } } template Foam::tmp calcK ( TurbulenceModel& turbulence, const volScalarField& mask, const volScalarField& nut, const volScalarField& y, const dimensionedScalar& ybl, const scalar Cmu, const scalar kappa ) { // Turbulence k tmp tk = turbulence->k(); volScalarField& k = tk(); scalar ck0 = pow025(Cmu)*kappa; k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl))); // Do not correct BC // - operation may use inconsistent fields wrt these local manipulations // k.correctBoundaryConditions(); correctProcessorPatches(k); Info<< "Writing k\n" << endl; k.write(); return tk; } template Foam::tmp calcEpsilon ( TurbulenceModel& turbulence, const volScalarField& mask, const volScalarField& k, const volScalarField& y, const dimensionedScalar& ybl, const scalar Cmu, const scalar kappa ) { // Turbulence epsilon tmp tepsilon = turbulence->epsilon(); volScalarField& epsilon = tepsilon(); scalar ce0 = ::pow(Cmu, 0.75)/kappa; epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl); epsilon.max(SMALL); // Do not correct BC // - operation may use inconsistent fields wrt these local manipulations // epsilon.correctBoundaryConditions(); correctProcessorPatches(epsilon); Info<< "Writing epsilon\n" << endl; epsilon.write(); return tepsilon; } void calcOmega ( const fvMesh& mesh, const volScalarField& mask, const volScalarField& k, const volScalarField& epsilon ) { // Turbulence omega IOobject omegaHeader ( "omega", mesh.time().timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (omegaHeader.headerOk()) { volScalarField omega(omegaHeader, mesh); dimensionedScalar k0("SMALL", k.dimensions(), SMALL); omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0); omega.max(SMALL); // Do not correct BC // - operation may use inconsistent fields wrt these local // manipulations // omega.correctBoundaryConditions(); correctProcessorPatches(omega); Info<< "Writing omega\n" << endl; omega.write(); } } void setField ( const fvMesh& mesh, const word& fieldName, const volScalarField& value ) { IOobject fldHeader ( fieldName, mesh.time().timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (fldHeader.headerOk()) { volScalarField fld(fldHeader, mesh); fld = value; // Do not correct BC // - operation may use inconsistent fields wrt these local // manipulations // fld.correctBoundaryConditions(); correctProcessorPatches(fld); Info<< "Writing " << fieldName << nl << endl; fld.write(); } } void calcCompressible ( const fvMesh& mesh, const volScalarField& mask, const volVectorField& U, const volScalarField& y, const dimensionedScalar& ybl ) { const Time& runTime = mesh.time(); autoPtr pThermo(fluidThermo::New(mesh)); fluidThermo& thermo = pThermo(); volScalarField rho(thermo.rho()); // Update/re-write phi #include "compressibleCreatePhi.H" phi.write(); autoPtr turbulence ( compressible::turbulenceModel::New ( rho, U, phi, thermo ) ); // Calculate nut - reference nut is calculated by the turbulence model // on its construction tmp tnut = turbulence->nut(); volScalarField& nut = tnut(); volScalarField S(mag(dev(symm(fvc::grad(U))))); nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S; // Do not correct BC - wall functions will 'undo' manipulation above // by using nut from turbulence model correctProcessorPatches(nut); nut.write(); tmp k = calcK(turbulence, mask, nut, y, ybl, Cmu, kappa); tmp epsilon = calcEpsilon(turbulence, mask, k, y, ybl, Cmu, kappa); calcOmega(mesh, mask, k, epsilon); setField(mesh, "nuTilda", nut); } void calcIncompressible ( const fvMesh& mesh, const volScalarField& mask, const volVectorField& U, const volScalarField& y, const dimensionedScalar& ybl ) { const Time& runTime = mesh.time(); // Update/re-write phi #include "createPhi.H" phi.write(); singlePhaseTransportModel laminarTransport(U, phi); autoPtr turbulence ( incompressible::turbulenceModel::New(U, phi, laminarTransport) ); tmp tnut = turbulence->nut(); // Calculate nut - reference nut is calculated by the turbulence model // on its construction volScalarField& nut = tnut(); volScalarField S(mag(dev(symm(fvc::grad(U))))); nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S; // Do not correct BC - wall functions will 'undo' manipulation above // by using nut from turbulence model correctProcessorPatches(nut); nut.write(); tmp k = calcK(turbulence, mask, nut, y, ybl, Cmu, kappa); tmp epsilon = calcEpsilon(turbulence, mask, k, y, ybl, Cmu, kappa); calcOmega(mesh, mask, k, epsilon); setField(mesh, "nuTilda", nut); } int main(int argc, char *argv[]) { argList::addNote ( "apply a simplified boundary-layer model to the velocity and\n" "turbulence fields based on the 1/7th power-law." ); #include "addRegionOption.H" argList::addOption ( "ybl", "scalar", "specify the boundary-layer thickness" ); argList::addOption ( "Cbl", "scalar", "boundary-layer thickness as Cbl * mean distance to wall" ); #include "setRootCase.H" if (!args.optionFound("ybl") && !args.optionFound("Cbl")) { FatalErrorInFunction << "Neither option 'ybl' or 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } else if (args.optionFound("ybl") && args.optionFound("Cbl")) { FatalErrorInFunction << "Both 'ybl' and 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } #include "createTime.H" #include "createNamedMesh.H" #include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Modify velocity by applying a 1/7th power law boundary-layer // u/U0 = (y/ybl)^(1/7) // assumes U0 is the same as the current cell velocity Info<< "Setting boundary layer velocity" << nl << endl; scalar yblv = ybl.value(); forAll(U, cellI) { if (y[cellI] <= yblv) { mask[cellI] = 1; U[cellI] *= ::pow(y[cellI]/yblv, (1.0/7.0)); } } mask.correctBoundaryConditions(); Info<< "Writing U\n" << endl; U.write(); if ( IOobject ( basicThermo::dictName, runTime.constant(), mesh ).headerOk() ) { calcCompressible(mesh, mask, U, y, ybl); } else { calcIncompressible(mesh, mask, U, y, ybl); } Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; Info<< "End\n" << endl; return 0; } // ************************************************************************* //