/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation \\/ M anipulation | Copyright (C) 2015-2016 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application applyBoundaryLayer Group grpPreProcessingUtilities Description Apply a simplified boundary-layer model to the velocity and turbulence fields based on the 1/7th power-law. The uniform boundary-layer thickness is either provided via the -ybl option or calculated as the average of the distance to the wall scaled with the thickness coefficient supplied via the option -Cbl. If both options are provided -ybl is used. Compressible modes is automatically selected based on the existence of the "thermophysicalProperties" dictionary required to construct the thermodynamics package. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "singlePhaseTransportModel.H" #include "turbulentTransportModel.H" #include "turbulentFluidThermoModel.H" #include "wallDist.H" #include "processorFvPatchField.H" #include "zeroGradientFvPatchField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Turbulence constants - file-scope static const scalar Cmu(0.09); static const scalar kappa(0.41); template void correctProcessorPatches ( GeometricField& vf ) { if (!Pstream::parRun()) { return; } typedef GeometricField volFieldType; // Not possible to use correctBoundaryConditions on fields as they may // use local info as opposed to the constraint values employed here, // but still need to update processor patches typename volFieldType::Boundary& bf = vf.boundaryFieldRef(); forAll(bf, patchi) { if (isA>(bf[patchi])) { bf[patchi].initEvaluate(); } } forAll(bf, patchi) { if (isA>(bf[patchi])) { bf[patchi].evaluate(); } } } void blendField ( const word& fieldName, const fvMesh& mesh, const scalarField& mask, const scalarField& boundaryLayerField ) { IOobject fieldHeader ( fieldName, mesh.time().timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (fieldHeader.typeHeaderOk(true)) { volScalarField fld(fieldHeader, mesh); scalarField& pf = fld.primitiveFieldRef(); pf = (1 - mask)*pf + mask*boundaryLayerField; fld.max(SMALL); // Do not correct BC // - operation may use inconsistent fields wrt these local // manipulations //fld.correctBoundaryConditions(); correctProcessorPatches(fld); Info<< "Writing " << fieldName << nl << endl; fld.write(); } } void calcOmegaField ( const fvMesh& mesh, const scalarField& mask, const scalarField& kBL, const scalarField& epsilonBL ) { // Turbulence omega IOobject omegaHeader ( "omega", mesh.time().timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (omegaHeader.typeHeaderOk(true)) { volScalarField omega(omegaHeader, mesh); scalarField& pf = omega.primitiveFieldRef(); pf = (1 - mask)*pf + mask*epsilonBL/(Cmu*kBL + SMALL); omega.max(SMALL); // Do not correct BC // - operation may use inconsistent fields wrt these local // manipulations // omega.correctBoundaryConditions(); correctProcessorPatches(omega); Info<< "Writing omega\n" << endl; omega.write(); } } void setField ( const fvMesh& mesh, const word& fieldName, const volScalarField& value ) { IOobject fldHeader ( fieldName, mesh.time().timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (fldHeader.typeHeaderOk(true)) { volScalarField fld(fldHeader, mesh); fld = value; // Do not correct BC // - operation may use inconsistent fields wrt these local // manipulations // fld.correctBoundaryConditions(); correctProcessorPatches(fld); Info<< "Writing " << fieldName << nl << endl; fld.write(); } } tmp calcNut ( const fvMesh& mesh, const volVectorField& U ) { const Time& runTime = mesh.time(); if ( IOobject ( basicThermo::dictName, runTime.constant(), mesh ).typeHeaderOk(true) ) { // Compressible autoPtr pThermo(fluidThermo::New(mesh)); fluidThermo& thermo = pThermo(); volScalarField rho(thermo.rho()); // Update/re-write phi #include "compressibleCreatePhi.H" phi.write(); autoPtr turbulence ( compressible::turbulenceModel::New ( rho, U, phi, thermo ) ); // Correct nut turbulence->validate(); return tmp(new volScalarField(turbulence->nut())); } else { // Incompressible // Update/re-write phi #include "createPhi.H" phi.write(); singlePhaseTransportModel laminarTransport(U, phi); autoPtr turbulence ( incompressible::turbulenceModel::New(U, phi, laminarTransport) ); // Correct nut turbulence->validate(); return tmp(new volScalarField(turbulence->nut())); } } int main(int argc, char *argv[]) { argList::addNote ( "apply a simplified boundary-layer model to the velocity and\n" "turbulence fields based on the 1/7th power-law." ); #include "addRegionOption.H" argList::addOption ( "ybl", "scalar", "specify the boundary-layer thickness" ); argList::addOption ( "Cbl", "scalar", "boundary-layer thickness as Cbl * mean distance to wall" ); argList::addBoolOption ( "write-nut", "Write the turbulence viscosity field" ); #include "setRootCase.H" if (!args.optionFound("ybl") && !args.optionFound("Cbl")) { FatalErrorInFunction << "Neither option 'ybl' or 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } else if (args.optionFound("ybl") && args.optionFound("Cbl")) { FatalErrorInFunction << "Both 'ybl' and 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } bool writeNut = args.optionFound("write-nut"); #include "createTime.H" #include "createNamedMesh.H" #include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Modify velocity by applying a 1/7th power law boundary-layer // u/U0 = (y/ybl)^(1/7) // assumes U0 is the same as the current cell velocity Info<< "Setting boundary layer velocity" << nl << endl; scalar yblv = ybl.value(); forAll(U, celli) { if (y[celli] <= yblv) { mask[celli] = 1; U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0)); } } mask.correctBoundaryConditions(); correctProcessorPatches(U); // Retrieve nut from turbulence model volScalarField nut(calcNut(mesh, U)); // Blend nut using boundary layer profile volScalarField S("S", mag(dev(symm(fvc::grad(U))))); nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S; // Do not correct BC - wall functions will 'undo' manipulation above // by using nut from turbulence model correctProcessorPatches(nut); if (writeNut) { Info<< "Writing nut\n" << endl; nut.write(); } // Boundary layer turbulence kinetic energy scalar ck0 = pow025(Cmu)*kappa; scalarField kBL(sqr(nut/(ck0*min(y, ybl)))); // Boundary layer turbulence dissipation scalar ce0 = ::pow(Cmu, 0.75)/kappa; scalarField epsilonBL(ce0*kBL*sqrt(kBL)/min(y, ybl)); // Process fields if they are present blendField("k", mesh, mask, kBL); blendField("epsilon", mesh, mask, epsilonBL); calcOmegaField(mesh, mask, kBL, epsilonBL); if (writeNut) setField(mesh, "nuTilda", nut); // Write the updated U field Info<< "Writing U\n" << endl; U.write(); Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; Info<< "End\n" << endl; return 0; } // ************************************************************************* //