{ volScalarField rAU("rAU", 1.0/UEqn.A()); surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU)); volVectorField HbyA("HbyA", U); HbyA = rAU*UEqn.H(); surfaceScalarField phiHbyA ( "phiHbyA", (fvc::interpolate(HbyA) & mesh.Sf()) + fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi) ); adjustPhi(phiHbyA, U, p_rgh); surfaceScalarField phig ( ( mixture.surfaceTensionForce() - ghf*fvc::snGrad(rho) )*rAUf*mesh.magSf() ); phiHbyA += phig; // Update the fixedFluxPressure BCs to ensure flux consistency setSnGrad ( p_rgh.boundaryField(), ( phiHbyA.boundaryField() - (mesh.Sf().boundaryField() & U.boundaryField()) )/(mesh.magSf().boundaryField()*rAUf.boundaryField()) ); while (pimple.correctNonOrthogonal()) { fvScalarMatrix p_rghEqn ( fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA) ); p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell)); p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter()))); if (pimple.finalNonOrthogonalIter()) { phi = phiHbyA - p_rghEqn.flux(); U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf); U.correctBoundaryConditions(); } } #include "continuityErrs.H" p == p_rgh + rho*gh; if (p_rgh.needReference()) { p += dimensionedScalar ( "p", p.dimensions(), pRefValue - getRefCellValue(p, pRefCell) ); p_rgh = p - rho*gh; } }