/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application Pe Description Calculates and writes the Pe number as a surfaceScalarField obtained from field phi. The -noWrite option just outputs the max/min values without writing the field. \*---------------------------------------------------------------------------*/ #include "calc.H" #include "fvc.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "incompressible/turbulenceModel/turbulenceModel.H" #include "incompressible/LESmodel/LESmodel.H" #include "basicThermo.H" #include "compressible/turbulenceModel/turbulenceModel.H" #include "compressible/LESmodel/LESmodel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh) { bool writeResults = !args.options().found("noWrite"); IOobject phiHeader ( "phi", runTime.timeName(), mesh, IOobject::MUST_READ ); if (phiHeader.headerOk()) { autoPtr PePtr; Info<< " Reading phi" << endl; surfaceScalarField phi(phiHeader, mesh); volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); Info<< " Calculating Pe" << endl; if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0)) { IOobject turbulencePropertiesHeader ( "turbulenceProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ); if (turbulencePropertiesHeader.headerOk()) { IOdictionary turbulenceProperties ( turbulencePropertiesHeader ); singlePhaseTransportModel laminarTransport(U, phi); if (turbulenceProperties.found("turbulenceModel")) { autoPtr turbulenceModel ( turbulenceModel::New(U, phi, laminarTransport) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) / ( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(turbulenceModel->nuEff()) ) ) ); } else if (turbulenceProperties.found("LESmodel")) { autoPtr sgsModel ( LESmodel::New(U, phi, laminarTransport) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) / ( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(sgsModel->nuEff()) ) ) ); } else { FatalErrorIn(args.executable()) << "Cannot find turbulence model type in " "turbulenceModel dictionary" << exit(FatalError); } } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar nu ( transportProperties.lookup("nu") ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mesh.surfaceInterpolation::deltaCoeffs() * (mag(phi)/mesh.magSf())*(runTime.deltaT()/nu) ) ); } } else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0)) { IOobject turbulencePropertiesHeader ( "turbulenceProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ); if (turbulencePropertiesHeader.headerOk()) { IOdictionary turbulenceProperties ( turbulencePropertiesHeader ); autoPtr thermo ( basicThermo::New(mesh) ); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh ), thermo->rho() ); if (turbulenceProperties.found("turbulenceModel")) { autoPtr turbulenceModel ( compressible::turbulenceModel::New ( rho, U, phi, thermo() ) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) / ( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(turbulenceModel->muEff()) ) ) ); } else if (turbulenceProperties.found("LESmodel")) { autoPtr sgsModel ( compressible::LESmodel::New(rho, U, phi, thermo()) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) / ( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(sgsModel->muEff()) ) ) ); } else { FatalErrorIn(args.executable()) << "Cannot find turbulence model type in" "turbulenceModel dictionary" << exit(FatalError); } } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar mu ( transportProperties.lookup("mu") ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mesh.surfaceInterpolation::deltaCoeffs() * (mag(phi)/(mesh.magSf()))*(runTime.deltaT()/mu) ) ); } } else { FatalErrorIn(args.executable()) << "Incorrect dimensions of phi: " << phi.dimensions() << abort(FatalError); } // can also check how many cells exceed a particular Pe limit /* { label count = 0; label PeLimit = 200; forAll(PePtr(), i) { if (PePtr()[i] > PeLimit) { count++; } } Info<< "Fraction > " << PeLimit << " = " << scalar(count)/Pe.size() << endl; } */ Info << "Pe max : " << max(PePtr()).value() << endl; if (writeResults) { PePtr().write(); } } else { Info<< " No phi" << endl; } } // ************************************************************************* //